• Title/Summary/Keyword: preventing floods

Search Result 18, Processing Time 0.026 seconds

Mobile Application Design for Farmland Flooding Prevention and Realtime Data Collection (농경지 침수 피해 감소와 실시간 자료 수집을 위한 모바일 기반 정보 시스템 설계)

  • Eun, Sang-Kyu;Kim, Tae-Gon;Lee, Ji-Min;Suh, Kyo;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2013
  • Climate change has increased the number of floods and inundation on farmland. Recently various mobile applications through inundation mapping, flood forecasts and evacuation routes have been developed for the prevention and reduction of flood damages. However, most of current prevention systems for farmland flooding are still web-based systems relying on the field survey which needs a lot of human and time resources although mobile devices has been rapidly improved and widely used. The purpose of this study is to design a mobile application for preventing and reducing farmland flood and inundation damages and collecting damage information in real time. We put advanced mobile device functions such as GPS, network communications, cameras into our system design. This system implement 2way communication and intuitive application that will increase information efficiency and decrease flood damage. Our design has been tested through previous flooding data of Jinju city in 2010.

Plan for Flood Control Linked with Dam and River Basin (댐과 하천유역을 연계한 홍수 대응 방안 - 2020년 섬진강 홍수사상을 대상으로 -)

  • Kyong Oh Baek;Dong Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • In this study, a one-dimensional numerical model was constructed to propose a flood control plan linked with the dam and river basin for the flood events of the Seomjin River in 2020. The flood level reduction of the downstream river was tested based on a scenario operation of the Seomjingang Dam and was also analyzed when a storage pocket was newly constructed as one of the river basin measures. It was confirmed that Seomjingang Dam's flood control capacity would be increased if the flood limit level was drastically lowered from the current EL. 196.5 m to EL. 188.0 m. In addition, if the upper area of the (old) Geumgok Bridge (which suffered great damage due to the loss of the levee) is used as a storage pocket, it would be effective in preventing floods in the lower area of it. In the era of the climate crisis, more integrated flood management is needed and basic river management must be observed.

Urban Flood Vulnerability Assessment Based on FCDM and PSR Framework

  • Quan Feng;Seong Cheol Shin;Wonjoon Wang;Junhyeong Lee;Kyunghun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.181-181
    • /
    • 2023
  • Flood is a major threat to human society, and scientific assessment of flood risk in human living areas is an important task. In this study, two different methods were used to evaluate the flood in Ulsan City, and the results were comprehensively compared and analyzed. Based on the fuzzy mathematics and VIKOR method of the multi-objective decision system, similar evaluation results were obtained in the study area. The results show that due to the large number of rivers in Ulsan City and the relatively high exposure index, the whole city faces a high risk of flooding. However, fuzzy mathematics theory pays more attention to the negative impact of floods on people, and the adaptability in the Nam-gu District is lower. In contrast, the VIKOR method pays more attention to the positive role of the economy and population in flood protection, and thus obtains a higher score. Both approaches demonstrate that the city of Ulsan faces a high risk of flooding and that its citizens and policymakers need to invest in preventing flood damage.

  • PDF

A Case Study on the Willow Tree Fence(樹柵) in Gasan(假山) of Cheonggyecheon, Hanyang in the Joseon Dynasty Period (조선시대 한양 청계천 가산(假山)의 버드나무 수책(樹柵)에 관한 연구)

  • SHIM Sunhui;KIM Choongsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.118-141
    • /
    • 2024
  • This study investigates and analyzes ancient literature records and iconographic materials to examine the Willow Tree Fence(樹柵) built on Gasan(假山) Cheonggyecheon(淸溪川) within the Hanyangdoseong, which was deliberately created to prevent flood damage during the Joseon Dynasty. Although there have been research cases related to the willow tree, it is difficult to find research conducted with the purpose of identifying its archetypal value by investigating and analyzing specific use cases of the willow tree and its historical background. Accordingly, this study aims to identify examples of the Willow Tree Fence(樹柵) created in Cheonggyecheon(淸溪川) during the Joseon Dynasty and reinterpret their value by illuminating the background of construction and regional characteristics. The main contents of this study are as follows. It is presumed that floods during the Joseon Dynasty were a great hazard. Between the 16th and 18th centuries, Joseon suffered severe damage from floods. By the time of King Yeongjo, all Four Mountains(四山) of the capital had become bare mountains, which was the cause of frequent floods. In the year of Gyeongjin(庚辰, the 26th year of King Yeongjo's reign, 1760), King Yeongjo dredged the channel bottom of Cheonggyecheon(淸溪川), which overflowed every rainy season, with the Juncheon Project(Channel-Dredging, 濬川事業) and planted willow trees on the mountain on both sides of the Ogan Water Gate(五間水門), as measures to prevent flood damage and soil loss. was implemented. In the <Doseongdo(都城圖)> in 《 Gwangyeodo(廣輿圖)》 produced in the mid-18th century during the reign of King Yeongjo, Gasan(假山), built in front of the Ogan Water Gate(五間水門) is visible, and in the record 『Sinjeung Donggukyeoji Seungnam(新增東國輿地勝)』 In the record, it appears that willows were planted on both sides of the mountain in the year of Gyeongjin(1760). With <Hanyangdoseong Map(漢陽都城圖)> produced in the 46th year of King Yeongjo's reign(1770), it is confirmed that willow trees formed a thick forest on Gasan Mountain near the Ogan Water Gate(五間水門) in the late 18th century. In addition, the Juncheon Project(Channel-Dredging, 濬川事業) and the creation of the Willow Tree Fence(樹柵) continued from the 15th century, the early Joseon Dynasty(朝鮮前期), to the end of the 19th century, the late Joseon Dynasty(朝鮮後期), through the records of ancient literature such as 『Annals of the Joseon Dynasty(朝鮮王朝實錄)』, 『Seungjeongwon Diary(承政院日記)』, and 『Records of Daily Reflections(日省錄)』. This study is meaningful in informing that the willow tree was a unique cultural heritage and traditional landscape resource by investigating the composition and use of the Willow Tree Fence in the Joseon Dynasty, which was a great basis for preventing floods and flood damage, as well as forming a beautiful landscape.

Changes in Plant Species on a Grass Roof over Time (초지지붕에서의 시간경과에 따른 식생변화)

  • Lee, Young-Moo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.6 s.119
    • /
    • pp.39-53
    • /
    • 2007
  • Unlike conventional roof landscaping, where various kinds of plants and structures are employed, a grass roof is a roof on which herbaceous plants are grown in planting medium and which is not accessed or maintained, mainly because it doesn't have sufficient load capacity to support a regular roof garden. They are mostly built on existing roofs, whether flat slab or gabled. Planting on roofs has numerous advantages, such as creating a biotope, purifying urban air, adding moisture to the atmosphere, storing rain water, preventing flash floods, reducing energy use for heating and air conditioning, enhancing the urban landscape and providing relaxation to the city dwellers, not to mention the alleviation of global warming by absorbing $CO_2$. In addition to the general merits of roof planting, the grass roof has its own unique qualities. Only herbaceous species are planted on the roof, resulting in light weight which allows roofs of existing buildings to be planted without structural reinforcement. The species chosen are mostly short, tough perennials that don't need to be maintained. These conditions provide an ideal situation where massive planting can be done in urban areas where roofs are often the only and definitely the largest space available to be planted. If roofs are planted on a massive scale they can play a significant role in alleviating global warming, heat island effects and energy shortages. Despite the advantages of grass roofs, there are some problems. The most significant problem is the invasion of neighboring plants. They may be brought in with the planting medium, by birds or by wind. These plants have little aesthetic value comparing to the chosen species and are usually taller. Eventually they dominate and prevail over the original species. The intended planting design disappears and the roof comes to look wild. Since the primary value of a grass roof is ecological, a change in attitude towards what constitutes beauty on the roofscape is necessary. Instead of keeping the roof neat through constant maintenance, people must learn that the wild grass with bird's nests on their roof is more beautiful as it is.

Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin (수요의 불확실성을 고려한 한강수계 댐 연계 운영 최적화)

  • Chung, Gun-Hui;Ryu, Gwan-Hyeong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • Future uncertainty on water demand caused by future climate condition and water consumption leads a difficulty to determine the reservoir operation rule for supplying sufficient water to users. It is, thus, important to operate reservoirs not only for distributing enough water to users using the limited water resources but also for preventing floods and drought under the unknown future condition. In this study, the reservoir storage is determined in the first stage when future condition is unknown, and then, water distribution to users and river stream is optimized using the available water resources from the first stage decision using 2-stage stochastic linear programming (2-SLP). The objective function is to minimize the difference between target and actual water storage in reservoirs and the water shortage in users and river stream. Hedging rule defined by a precaution against severe drought by restricting outflow when reservoir storage decreases below a target, is also applied in the reservoir operation rule for improving the model applicability to the real system. The developed model is applied in a system with five reservoirs in the Han River basin, Korea to optimize the multi-reservoir system under various future water demand scenarios. Three multi-purposed dams - Chungju, Hoengseong, and Soyanggang - are considered in the model. Gwangdong and Hwacheon dams are also considered in the system due to the large capacity of the reservoirs, but they are primarily for water supply and power generation, respectively. As a result, the water demand of users and river stream are satisfied in most cases. The reservoirs are operated successfully to store enough water during the wet season for preparing the coming drought and also for reducing downstream flood risk. The developed model can provide an effective guideline of multi-reservoir operation rules in the basin.

Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People's Democratic Republic (기후변화에 따른 라오스인민공화국의 시방파이 유역의 수문현상 예측에 대한 연구: SWAT 모델을 이용하여)

  • Phomsouvanh, Virasith;Phetpaseuth, Vannaphone;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.6
    • /
    • pp.779-797
    • /
    • 2016
  • A calibrated hydrological model is a useful tool for quantifying the impacts of the climate variations and land use/land cover changes on sediment load, water quality and runoff. In the rainy season each year, the Xe Bang Fai river basin is provisionally flooded because of typhoons, the frequency and intensity of which are sensitive to ongoing climate change. Severe heavy rainfall has continuously occurred in this basin area, often causing severe floods at downstream of the Xe Bang Fai river basin. The main purpose of this study is to investigate the climate change impact on river discharge using a Soil and Water Assessment Tool (SWAT) model based on future climate change scenarios. In this study, the simulation of hydrological river discharge is used by SWAT model, covering a total area of $10,064km^2$ in the central part of country. The hydrological model (baseline) is calibrated and validated for two periods: 2001-2005 and 2006-2010, respectively. The monthly simulation outcomes during the calibration and validation model are good results with $R^2$ > 0.9 and ENS > 0.9. Because of ongoing climate change, three climate models (IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030) indicate that the rainfall in this area is likely to increase up to 10% during the summer monsoon season in the near future, year 2030. As a result of these precipitation increases, the SWAT model predicts rainy season (Jul-Aug-Sep) river discharge at the Xebangfai@bridge station will be about $800m^3/s$ larger than the present. This calibrated model is expected to contribute for preventing flood disaster risk and sustainable development of Laos

  • PDF

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.