• 제목/요약/키워드: pretension to the bolts

검색결과 16건 처리시간 0.021초

금속 링 개스킷이 삽입된 Class 900 플랜지 조인트의 거동에 관한 연구 (A Study on the Behavior of Class 900 Flange Joints with Metal Ring Gaskets)

  • 이민영;정두형;김병탁
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.34-41
    • /
    • 2018
  • A flange joint is a pipe connection used to prevent the leakage of high-pressure fluids by inserting a gasket and tightening the bolts. Among several kinds of gaskets available, metal ring type joint gaskets are most widely used in conditions that require high-temperature and high-pressure fluid flow, such as oil pipelines, gas pipes, pumps, valve joints, etc. The purpose of this study is to investigate the contact pressure and stress characteristics closely related to the sealing performance of Class 900 flange joints used in high temperature and high pressure environments. The dimensions of flange joints with five different nominal pipe sizes were determined with reference to those specified in ASME 16.5. The metal ring gaskets inserted in the joints were octagonal and oval gaskets. The bolt tensile forces calculated from the tightening torques were input as the bolt pretension loads in order to determine the contact pressure and stress levels after fastening. Loading was composed of three steps, including the fastening step, and different amounts of applied pressures were used in each analysis to investigate the effect of fluid pressure on the contact force of the joints. A general-purpose software, ANSYS 17.2, was used for the analysis.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

A Study on the Contact Characteristics of Metal Ring Joint Gaskets

  • 이민영;김병탁
    • 한국태양에너지학회 논문집
    • /
    • 제36권3호
    • /
    • pp.25-31
    • /
    • 2016
  • Gaskets are usually used for the sealing of flange joints. The joint is usually composed of two flanges, a ring gasket and clamping bolts. The metal ring gasket is suitable for pipe flanges, pumps and valve joints in high temperature and high pressure environments. A very high surface stress is developed between a ring type joint gasket and the flange groove when the ring type joint is bolted up in a flange. The dimensions of flanges and ring joint gaskets for the pipe sizes that are in common use are specified in the ANSI codes. However, sometimes it is necessary to make a new design for the flange joint which is not specified in the codes, as the equipment is getting larger and larger in size. This paper presents the contact behavior of Class 600 ring joint gaskets with oval and octagonal cross sections. Five different sizes of gaskets are employed in the analysis, and one of them is newly designed on the basis of analysis results obtained from existing models. Three load steps are used to find the stress, stain and contact pressure etc., and to compare the contact characteristics among the models due to the bolt clamping force and the working surface pressure. ANSYS Workbench version15 is used to conduct the finite element analysis.

볼트 체결부를 갖는 구조물의 유한요소모델링에 관한 연구 (A Study on Finite Element Modeling of the Structure with Bolted Joints)

  • 윤주철;강범수;김정
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.205-212
    • /
    • 2003
  • In this study, in order to investigate a modeling technique of the structure with bolted joints, four kinds of finite element model are introduced; a solid bolt model, a coupled bolt model, a spider bolt model, and no bolt model. All proposed models take account on prestrained effect and contact behavior of flanges to be joined. Among these models, a solid bolt model, which is modeled by using a 3-D solid element and a surface-to-surface contact element between the head/nut and the flange interfaces, has the best accurate responses compared with the experimental results. In addition, coupled bolt model, which couples the degree of freedom between the head/nut and the flange, shows the best effectiveness and usefulness in view of computational time and memory usage. Finally, the bolt model proposed here is adopted for structural analysis of a large diesel engine of a ship consisting of several parts which is connected by long stay bolts.