• 제목/요약/키워드: prestressed concrete structure

검색결과 151건 처리시간 0.026초

A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder

  • Gao, Qiong;Yang, Meng-Gang;Qiao, Jian-Dong
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.567-577
    • /
    • 2017
  • The traditional design procedure of a prestressed concrete (PC) cable-stayed bridge is complex and time-consuming. The designers have to repeatedly modify the configuration of the large number of design parameters to obtain a feasible design scheme which maybe not an economical design. In order to efficiently achieve an optimum design for PC cable-stayed bridges, a multi-parameter optimization technique is proposed. In this optimization technique, the number of prestressing tendons in girder is firstly set as one of design variables, as well as cable forces, cable areas and cross-section sizes of the girders and the towers. The stress and displacement constraints are simultaneously utilized to ensure the safety and serviceability of the structure. The target is to obtain the minimum cost design for a PC cable-stayed bridge. Finally, this optimization technique is carried out by a developed PC cable-stayed bridge optimization program involving the interaction of the parameterized automatically modeling program, the finite element structural analysis program and the optimization algorithm. A low-pylon PC cable-stayed bridge is selected as the example to test the proposed optimization technique. The optimum result verifies the capability and efficiency of the optimization technique, and the significance to optimize the number of prestressing tendons in the girder. The optimum design scheme obtained by the application can achieve a 24.03% reduction in cost, compared with the initial design.

PSC 거더교의 하중횡분배에 관한 연구 (Lateral Load Distribution for Prestressed Concrete Girder Bridge)

  • 박문호;박정활;김진규
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.157-166
    • /
    • 2001
  • The purpose of this study is to examine the accuracy of the code provisions on lateral load distribution factors of prestressed concrete girder bridges. Most designers in Korea use the lever method or lateral load distribution formula in the existing design codes. However, the methods do not account for the effect of bridge skew or direction of diaphragm. Therefore, this study analysed the prestressed concrete girder bridge with grillage model for various girder spacings, directions of diaphragms, span lengths, and skews, and compared the results with those of existing design code. It has been found that lateral load distribution factors were proportional to the girder spacing while they were not significantly affected by the change of span length, direction of diaphragm, and skew. For bending moments, lateral load distribution factors from the grillage analysis were 60%~68% of those from Korean bridge design code. Therefore, the code provisions result in very conservative design. For support reactions, however, lateral load distribution factors from the grillage analysis were slightly greater than those from Korean bridge design code. Therefore, the capacity of bearings of the bridge with a large skew should be determined by grillage analysis.

  • PDF

클러스터 시스템에서 프리스트레스트 콘크리트 프레임의 병렬 비선형해석 (Parallel Nonlinear Analysis of Prestressed Concrete Frame on Cluster System)

  • 이재석;최규천
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.287-298
    • /
    • 2001
  • 본 논문에서는 클러스터 시스템을 이용하여 프리스트레스트 콘크리트 프레임의 병렬 비선형해석이 가능한 해석수단을 제시하였다. Win 98 및 Linux 운영체제 하의 PC 및 Ethernet을 활용하여 저가의 클러스터 시스템을 구축하였고 메시지 전송을 위하여 MPI를 사용하였다. 비선형해석에 있어 해석시간의 대부분을 차지하는 반복계산과정 중 병렬계산에 의한 효율이 높은 접선강도매트릭스의 형성 및 요소응력계산, 재료상태 결정, 부재파괴 검토, 불평형하중 계산과정에 대한 병렬계산 알고리즘을 메시지 전송방식을 이용하여 제시하고 클러스터 시스템 상에서 구현했다. 캔틸레버 보와 PSC 거더교를 대상으로 클러스터 컴퓨팅을 이용한 비 선형해석을 수행한 결과 노트가 4개일 경우의 성능향상은 고려한 비선형형성 및 문제의 크기에 따라 다르나 Win98 환경에서 최소 2.46배에서 최대 3.18배로 나타났고 Linux 환경에서 최소 3.16배에서 최대 3.74배로 나타났으며 통신환경의 개선에 따라 증대될 것으로 기대된다.

  • PDF

초고강도 섬유보강 시멘트 복합체 I형 프리스트레스트 보의 거동 해석 (Analysis of the UHP-SFRCC(Ultra High Performance Steel Fiber Reinforced Cementitious Composites) I section Prestressed beam.)

  • 한상묵;김성욱;강수태;강준형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.57-60
    • /
    • 2005
  • The objective of this paper is to investigate and analyze the behaviour of prestressed I section structural members constructed with ultra high perfomance steel fiber reinforced cementitious concrete (SFR-UHPC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The parameters of test specimens were span to depth ratio, prestressing force, prestressing wire placement and web width. Most influential parameter to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone should be redefined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

케이블로 지지된 PC뼈대의 시간의존적 비선형 해석 (Time-Dependent Nonlinear Analysis of Cable-Supported Prestressed Concrete Frames)

  • 이재석;강영진
    • 대한토목학회논문집
    • /
    • 제12권4호
    • /
    • pp.33-47
    • /
    • 1992
  • 본 논문에서는 케이블로 지지된 프리스트레스트 콘크리트(PC) 뼈대의 시공중의 각 단계를 고려하고 콘크리트와 PC 강재, 케이블 재료의 시간의존적 특성 및 재료의 비선형성과 케이블의 색 및 구조물의 처짐에 의한 기하학적 비선형성도 고려하는 해석방법을 제시했다. 구조물의 비선형거동을 해석하기 위한 운동방정식은 Updated Lagrangian 방식을 이용하여 유도하고 시간의존적인 거동올 해석하기 위해서 시간영역을 시간단계로 나누어 순차적으로 적분했다. 시공중의 각 단계를 표현하기 위해 계속적인 구조계의 변화를 고려했다. 본 논문에서 제시한 해석방법에 근거하여 컴퓨터 프로그램 CFRAME을 개발하고 예제들을 통하여 해석방법의 정당성을 보였다.

  • PDF

비선형 회귀분석기법을 이용한 콘크리트 교량 프리스트레스의 장기 예측 (Long-Term Prediction of Prestress in Concrete Bridge by Nonlinear Regression Analysis Method)

  • 양인환
    • 콘크리트학회논문집
    • /
    • 제18권4호
    • /
    • pp.507-515
    • /
    • 2006
  • 본 연구에서는 프리스트레스트 콘크리트(PSC) 교량의 프리스트레스를 장기적으로 예측하는 기법을 제안하였다. 제안 기법에서는 구조시스템의 계측자료를 이용하여 비선형 회귀분석을 전개하는 통계적 기법을 적용하였다. 프리스트레스의 장기예측은 비선형 회귀분석을 통해 이루어진다. 제안기법을 실제의 PSC 박스 거더 교량의 프리스트레스 예측에 적용하기 위하여 텐던에 프리스트레스 도입후 계측을 수행하였다. 프리스트레스 도입후 약 150일까지 프리스트레스는 눈에 띄게 감소하며, 손실률은 $7{\sim}8%$로 나타났다. 수치해석결과는 현장의 계측횟수가 증가할수록 신뢰구간의 폭은 감소하는 것으로 나타났다. 따라서, 제안기법에 의해 PSC 구조물의 프리스트레스를 더욱 실제적으로 예측할 수 있으며, 예측결과는 구조물의 사용기간 동안 관리 한계치에 의한 프리스트레스 관리에 유용하게 활용될 수 있을 것으로 사료된다.

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

Time-dependent analysis of launched bridges

  • Mapelli, M.;Mola, F.;Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.741-764
    • /
    • 2006
  • The time-dependent analysis of prestressed concrete bridges built adopting the incremental launching technique is presented. After summarizing the well known results derived from the elastic analysis, the problem is approached in the visco-elastic domain taking into account the effects consequent to the complex load history affecting the structure. In particular, the effects produced by prestressing applied both in the launching phase and after it and by application of imposed displacements and of delayed restraints during the launching phases are carefully investigated through a refined analytical procedure. The reliability of the proposed algorithm is tested by means of comparisons with reference cases for which exact solutions are known. A case study of general interest is then discussed in detail. This case study demonstrates that a purely elastic approach represents a too crude approximation, which is unable to describe the specific character of the problem.