• Title/Summary/Keyword: prestressed anchor

Search Result 28, Processing Time 0.03 seconds

Design Methodology of Transverse Post-Tensioning for Prestressed Concrete Pavements (프리스트레스트 콘크리트 포장의 횡방향 긴장 설계방안)

  • Kim, Seong-Min;Yoon, Dong-Joo;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.269-279
    • /
    • 2008
  • This study was conducted to develop the design methodology of transverse post-tensioning for the prestressed concrete pavement (PSCP). The transverse stress distribution was analyzed when the transverse anchor spacing changed. The tensile stress distribution in the PSCP slab due to the environmental and vehicle loads was also investigated. The reasonable methods were discussed to determine the design loads including environmental and vehicle loads and the PSCP allowable tensile stress used for the basis of the selection of the stress application amount from the tensioning. The results of this study showed that as the transverse anchor spacing increased, the range of the stress loss became larger and the stress loss was significant near the shoulder. The design of the transverse post-tensioning can be performed by obtaining the stresses under the design loads and by considering the allowable tensile stress; however, the tensile stresses at different locations such as the shoulder, wheel pass, and slab interior should also be checked and kept below the allowable tensile stress.

  • PDF

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.

A Case Study on Reinforcement of Slope in PAP Retaining Wall using Back Analysis (PAP옹벽에서 역해석을 이용한 사면보강 사례 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • The endpoint of the Yangbuk tunnel constructed at the national road between Gyeongju and Gampo is composed of massive cutting because the road is driven through the sides of mountain. PAP(Prestressed Anchor and PC Pannel) retaining wall as a slope stability method was established over this section. Part of the anchor in PAP wall became broken after six months. We performed inverse analysis through its measurements obtained until that time. An geological investigation to confirm the condition of ground layering and the attraction force test to find as to whether some errors might be present in the anchor were made. According to the back analysis, it was turned out that the value with soil parameter 90% that was applied to the original design was pertinent. In the redesign, the permissible stress in the anchor body was changed from 306 kN to 591 kN and 784 kN and the fixation position was increased from 11.0 m to 23.0 m. Nevertheless, five months have passed since the exchange of the anchor, the measurement results validate that stable state has been maintained. This research is considered a case that the immediate maintenance helps prevent the slope accidents.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Application by Auto Back Tension System (오토백 인장장치의 적용성)

  • Park, Sang-Kook
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.66-72
    • /
    • 2006
  • The ground anchoring has been utilized over 40 years. It is growing the application of the removal ground anchor with tension force for holding earth retaining constructions in the city. It transmits tension stress of prestressed steel wire through grouting to fixed the ground that is of great advantage adjacent ground stability. Nowadays, we can find the compression dispersion anchor on many site. But, it has some problems in behavior of anchors because of impossible to tense p.c strand uniformly under the existing equipment due to different length of p c strand. Hence, motive of this research was to study the application of the newly developed tension system, that analyze and compare with the current anchoring method build on the data of in-site test and laboratory test. As a result, in case of auto back tension system, it became clear that tension pressure was equally distributed among the steal wires but the existing tension system showed sign of instability by indicating stress deflection of about 30% compare with design load. This can cause an ultimate failure of the concentrated p.c strand and a shear failure of ground.

  • PDF

Experimental Study on Wedge-type Anchorage System for CFRP Laminates (CFRP판용 쐐기형 정착장치에 대한 실험적 연구)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.157-160
    • /
    • 2006
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative wedge-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage and the effect of elastic modulus of tab. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

Tensile behavior of new 2,200 MPa and 2,400 MPa strands according to various types of mono anchorage

  • Kim, Jin Kook;Seong, Taek Ryong;Jang, Kyung Pil;Kwon, Seung Hee
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.383-399
    • /
    • 2013
  • High-strength strands are widely used as a key structural element in cable-stayed bridges and prestressed concrete structures. Conventional strands for stay cable and tendons in prestressed concrete structures are ${\phi}$15.7mm coated seven-wire strands and ${\phi}15.2mm$ uncoated seven-wire strands, respectively, but the ultimate strengths of both strands are 1860MPa. The objective of this paper is to investigate the tensile behavior of a newly developed ${\phi}15.7mm$ 2,200 MPa coated strand and a ${\phi}15.2mm$ 2,400 MPa uncoated strand according to various types of mono anchorages and to propose appropriate anchorages for both strands. Finite element analyses were initially performed to find how the geometry of the anchor head affects the interaction among the anchor head, the wedge and the strand and to find how it affects the stress distributions in both parts. Tensile tests for the new strands were carried out with seven different types of mono anchorages. The test results were compared to each other and to the results obtained from the tensile tests with a grip condition. From the analysis and the test results, desirable mono anchorages for the new strands are suggested.

Deformation Behavior and Slope Stability Effect of Anchored Retention Walls Installed in Cut Slope (절개사면에 설치된 앵커지지 합벽의 변형거동 및 사면안정효과)

  • Hong Won-Pyo;Han Jung-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.57-64
    • /
    • 2004
  • In order to establish the design method of anchored retention walls in cut slope, the behavior of anchored retention walls and backside ground needs to be investigated and checked in detail. In this study, the behavior of anchored retention walls was investigated by instrumentation installed in cut slope for an apartment construction site stabilized by a row of piles and anchored retention walls. When the anchor was installed at each excavating stages, the horizontal deflection of retention wall decreased, while the horizontal deformation of backside ground increased. The deflection of anchored retention wall decreased as the anchor was prestressed. The prestressed anchor farce has a great effect on the deflection of retention walls, while it has little effect on the deformation of its backside ground. The maximum horizontal deflection of anchored retention walls was developed between $1\%\;and\;4\%$ of excavation depth, which are $2\~8$ times larger than max. horizontal deflection of anchored retention walls including rock layers with backside horizontal ground. Meanwhile, SLOPILE (ver. 3.0) program analyzes the slope stability effects for anchored retention walls. As a result of analysis on slope stability analysis, the lateral earth pressure applied at anchored retention piles could be used as the mean values of empirical lateral pressures using anchored retention wall with horizontal ground at its backside.

An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section (I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구)

  • Kim, Sun-Hee;Lee, Seng-Hoo;Park, Joon-Seok;Cheon, Jinuk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

Lateral Earth Pressures Acting on Anchored Retention Walls for Underground Excavation (지하굴착시 앵커지지 흙막이벽에 작용하는 측방토압)

  • 홍원표;윤중만
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-78
    • /
    • 1995
  • Recently, in order to utilize more effectively underground space, deep excavations have been performed on building or subway construction in urban areas. In such excavations, anchors have been used to support the excavation retaining walls because the anchored excavation could provide wide working space for underground construction. The purpose of this paper is to establish empirical equations to be able to estimate the earth pressures acting on anchored excavation retention walls, based on the investigation of field measuring results, which were obtained from twenty seven building construction sites. The prestressed anchor force was measured by load cells which were attached to the anchor head, while the horizontal displacement of excavation walls were measured by inclinometers which were installed right'behind the retention walls. The lateral earth pressures acting on the anchored retention walls, which were estimated from both the measured anchor forces and the horizontal displacement of the walls, showed a trapezoidal distribution. There was some difference between the measured earth pressures acting on the anchored retention walls and the empirical earth pressures given by several empirical equations. Thus, the lateral earth pressures acting on anchored retention walls would be estimated by these empirical equations with some modifications.

  • PDF