• 제목/요약/키워드: prestress-loss

검색결과 56건 처리시간 0.019초

Performance of non-prismatic simply supported prestressed concrete beams

  • Raju, P. Markandeya;Rajsekhar, K.;Sandeep, T. Raghuram
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.723-738
    • /
    • 2014
  • Prestressing is the most commonly employed technique in bridges and long span beams in commercial buildings as prestressing results in slender section with higher load carrying capacities. This work is an attempt to study the performance of a minimum weight prestressed concrete beam adopting a non-prismatic section so that there will be a reduction in the volume of concrete which in turn reduces the self-weight of the structure. The effect of adopting a non-prismatic section on parameters like prestressing force, area of prestressing steel, bending stresses, shear stresses and percentage loss of prestress are established theoretically. The analysis of non-prismatic prestressed beams is based on the assumption of pure bending theory. Equations are derived for dead load bending moment, eccentricity, and depth at any required section. Based on these equations an algorithm is developed which does the stress checks for the given section for every 500 mm interval of the span. Limit state method is used for the design of beam and finite difference method is used for finding out the deflection of a non-prismatic beam. All the parameters of nonprismatic prestressed concrete beams are compared with that of the rectangular prestressed concrete members and observed that minimum weight design and economical design are not same. Minimum weight design results in the increase in required area of prestressing steel.

Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Theanh
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.917-933
    • /
    • 2016
  • In a prestressed concrete bridge, the magnitude of the prestress force (PF) decreases with time. This unexpected loss can cause failure of a bridge which makes prestress force identification (PFI) critical to evaluate bridge safety. However, it has been difficult to identify the PF non-destructively. Although some research has shown the feasibility of vibration based methods in PFI, the requirement of having a determinate exciting force in these methods hinders applications onto in-service bridges. Ideally, it will be efficient if the normal traffic could be treated as an excitation, but the load caused by vehicles is difficult to measure. Hence it prompts the need to investigate whether PF and moving load could be identified together. This paper presents a synergic identification method to determine PF and moving load applied on a simply supported prestressed concrete beam via the dynamic responses caused by this unknown moving load. This method consists of three parts: (i) the PF is transformed into an external pseudo-load localized in each beam element via virtual distortion method (VDM); (ii) then these pseudo-loads are identified simultaneously with the moving load via Duhamel Integral; (iii) the time consuming problem during the inversion of Duhamel Integral is overcome by the load-shape function (LSF). The method is examined against different cases of PFs, vehicle speeds and noise levels by means of simulations. Results show that this method attains a good degree of accuracy and efficiency, as well as robustness to noise.

Theoretical model to determine bond loss in prestressed concrete with reinforcement corrosion

  • Ortega, Nestor F.;Moro, Juan M.;Meneses, Romina S.
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.1-7
    • /
    • 2018
  • This paper reviews the mechanical effects produced by reinforcement corrosion of prestressed concrete beams. Specifically, modifications in the bonding of the tendon to the concrete that reduce service life and load bearing capacity are studied. Experimental information gathered from previous works has been used for the theoretical analysis. Relationships between bond stress loss and reinforcement penetration in the concrete, and concrete external cracking were established. Also, it was analysed the influence that has the location of the area affected by corrosion on the loss magnitude of the initial prestress.

고장력볼트 연결부의 미끄럼 및 소성해석에 의한 안전도 연구 (The Safety Study on High Tension Bolted Splice by Sliding and Plastic Analysis)

  • 방명석
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.110-114
    • /
    • 2003
  • In this study is proposed the advanced elasto-plastic analytical method which can identify complex structural behaviors on the splice part of steel structures such as sliding and plastic contact problem between splice plates and blots. Compliated boundary conditions and various manufacturing defects are considered in various analytical cases. In the design or repair phase the plastic behavior and ultimate strength of splice parts should be very carefully verified to extend the service life of steel structures.

재령보정 유효계수방법에 의한 프리스트레스트 합성거더의 장기거동 실험 검증 (Experimental Verification of Age-adjusted Effective Modulus Method to Long-Term Behavior Estimation of Prestressed Composite Girders)

  • 배두병;오창국;최석환
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.571-582
    • /
    • 2012
  • 프리스트레스트 합성거더란 합성거더의 하부 콘크리트에 프리스트레싱 강선을 통해 압축력을 도입한 거더형식으로, 본 연구에서는 거푸집을 강재에 매달아 콘크리트의 자중이 강재에 부담된 상태로 합성시켜 단면의 효율을 극대화한 거더를 사용하였다. 이러한 프리스트레스트 합성거더에 대하여 재령보정 유효계수방법을 사용하여 시공단계별로 발생하는 여러 지속하중에 의한 장기거동 효과로 인해 유발되는 프리스트레스의 손실을 산정하고, 실제교량을 대상으로 시공단계별로 계측한 결과에 대해 야쓰미해법을 이용한 결과와 비교하였고, 또한 온도, 습도, 프리스트레스 긴장시기, 바닥판 타설시기를 변수로 한 변수해석을 수행하여 유효성을 검증하였다.

Evaluating fire resistance of prestressed concrete bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Hou, Wei;He, Shuanhai
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.663-674
    • /
    • 2017
  • This paper presents an approach for evaluating performance of prestressed concrete (PC) bridge girders exposed to fire. A finite element based numerical model for tracing the response of fire exposed T girders is developed in ANSYS. The analysis is carried out in three stages, namely, fire temperature calculation, cross sectional temperature evaluation, and then strength, deformation and effective prestress analysis on girders exposed to elevated temperatures. The applicability of the computer program in tracing the response of PC bridge girders from the initial preloading stage to failure stage, due to combined effects of fire and structure loading, is demonstrated through a case study, and validated by test data of a scaled PC box girder under ISO834 fire condition. Results from the case study show that fire severity has a significant influence on the fire resistance of PC T girders and hydrocarbon fire is most dangerous for the girder. The prestress loss caused by elevated temperature is about 10% under hydrocarbon fire till the girder failure, which can lead to the increase in deflection of the PC girder. The rate of deflection failure criterion is suggested to determine the failure of PC T girder under fire.

Numerical study on tensioned membrane structures under impact load

  • Zhang, Yingying;Zhao, Yushuai;Zhang, Mingyue;Zhou, Yi;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.109-118
    • /
    • 2019
  • This paper presents the numerical simulation of membrane structure under impact load. Firstly, the numerical simulation model is validated by comparing with the test in Hao's research. Then, the effects of the shape of the projectile, the membrane prestress and the initial impact speed, are investigated for studying the dynamic response and failure mechanism, based on the membrane displacement, projectile acceleration and kinetic energy. Finally, the results show that the initial speed and the punch shape are related with the loss of kinetic energy of projectiles. Meanwhile, the membrane prestress is an important factor that affects the energy dissipation capacity and the impact resistance of membrane structures.

구조용 케이블의 인장력 모니터링을 위한 무선 임피던스 센서노드 기술의 적용성에 관한 연구 (A Study on Applicability of Wireless Impedance Sensor Nodes Technique for Tensile Force Monitoring of Structural Cables)

  • 박재형;홍동수;김정태;나원배;조현만
    • 한국강구조학회 논문집
    • /
    • 제22권1호
    • /
    • pp.21-31
    • /
    • 2010
  • 본 연구에서는 구조 케이블의 인장력 모니터링을 위한 무선 임피던스 센서노드를 개발하였다. 이를 위해 다음과 같은 연구가 수행되었다. 첫째, 경제적이고 자동화된 구조 케이블의 인장력 모니터링을 위한 무선임피던스 센서노드를 설계/제작 하였다. 둘째, 자동화된 인장력 모니터링을 위해 임피던스 기반 모니터링 기법을 무선 센서노드에 내장하였다. 셋째, 측정 범위가 제한적인 무선임피던스 센서노드의 한계점을 극복하기 위하여 인터페이스 와셔를 이용하는 구조케이블 인장력 모니터링 기법을 제안하였다. 마지막으로 내장형/외장형 텐던을 가지는 모형 프리스트레스트 콘크리트 거더에 대하여 무선임피던스 센서노드와 인터페이스 와셔를 이용하는 모니터링 기법의 적용성을 평가하였다.

원자로 격납구조 콘크리트의 크리프 특성에 관한 연구 (A Stud on the Creep Characteristics of Concrete for Reactor Containment Structure)

  • 송하원;정원섭;변근주;송영철
    • 콘크리트학회지
    • /
    • 제9권4호
    • /
    • pp.155-165
    • /
    • 1997
  • 프리스트레스트 콘크리트 구조물인 원자로 격납구조에서 콘크리트의 크리프는 프리스트레스의 가장 큰 시간의존적 손실을 야기하며 격납구조의 설계 시공 및 유지관리시의 안전성 확보에 매우 중요한 재료특성이다. 본 논문은 원자로 격납구조 콘크리트의 크리프 특성에 관한 연구이다. 본 논문에서는 5종 시멘트로 제조된 원자로 격납구조 콘크리트의 크리프트성을 알기 위하여 크리프시험을 수행하였다. 또한 최근 개정된 건교부 제정 콘크리트 표준시방서와 일본 콘크리트 표준 시방서에 의한 크리프 예측식을 포함하여 ACI-209식, CEB/FIB식 및 HANSEN식의 적용성을 평가하기 위하여 예측식들에 의한 크리프 예측결과를 실험결과와 비교하였다. 비교로부터 건교부제정 콘크리트 표준시방서의 크리프 예측식이 다른 비교 대상 크리프 예측식들보다 대상 콘크리트의 크리프치를 비교적 잘 예측함을 알았으며, 1년 이상의 재령에서는 비교대상이 된 모든 예측식들이 크리프 변형을 과소평가함을 알았다. 한편 실험결과의 회귀분석으로부터 재령 1년이후의 재하조건에 의해 발생되는 대상 콘크리트의 크리프를 유효하게 예측할 수 있는 예측식을 제안하였다.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.