• 제목/요약/키워드: pressurized water reactor

검색결과 492건 처리시간 0.024초

핵연료 피복관 부식생성물 부착에 관한 Ni/Fe 이온 농도비의 영향 (Effect of Ni/Fe Ion Concentration Ratio on Fuel Cladding Crud Deposition)

  • 백승헌;김우철;심희상;임경수;허도행
    • Corrosion Science and Technology
    • /
    • 제13권4호
    • /
    • pp.145-151
    • /
    • 2014
  • The objectives of this study are to investigate the effect of the concentration ratios of Ni and Fe ions on crud deposition onto the fuel cladding surface in the simulated primary environments of a pressurized water reactor. Crud deposition tests were conducted in the Ni and Fe concentration ratios of 20:20 ppm, 39:1 ppm and 1:39 ppm at $325^{\circ}C$ for 14 days. In the case of the same Ni and Fe ion ratio (20:20), nickel ferrite with a polyhedral shape was formed. Nickel oxide deposits with a needle shape were formed in the condition of high Ni to Fe ion ratio (39:1), While polyhedral iron oxide and needle-like nickel oxide formed in the condition of low Ni to Fe ion ratio (1:39). The amount of deposits increased, when Fe oxides were formed. This indicates that Fe rich oxides stimulated Ni oxide deposition.

핵연료 피복관 부식생성물 부착에 대한 용존수소의 영향 (Effect of Dissolved Hydrogen on Fuel Crud Deposition)

  • 백승헌;김우철;심희상;임경수;원창환;허도행
    • Corrosion Science and Technology
    • /
    • 제13권2호
    • /
    • pp.56-61
    • /
    • 2014
  • The purpose of this work is to investigate the effect of dissolved hydrogen concentration on crud deposition onto the fuel cladding surface in the simulated primary environments of a pressurized water reactor. Crud deposition tests were conducted in the dissolved hydrogen concentration range of 5~70 cc/kg at $325^{\circ}C$ for 14 days. Needle-shaped NiO deposits were formed in the hydrogen range of 5~25 cc/kg, while polygonal nickel ferrite deposits were observed at a hydrogen concentration above 35 cc/kg. However, the dissolved hydrogen content seems to have little effect on the amount of crud deposits.

공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계 (Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design)

  • 송기남;강병수;최성규;윤경호;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.548-553
    • /
    • 2001
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and protects the system from the external impact loads. Various space grids have been proposed and new designs are also being created. In this research, a new spacer grid is designed by the axiomatic approach. The Independence Axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

  • PDF

공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계 (Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design)

  • 송기남;강병수;최성규;윤경호;박경진
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1623-1630
    • /
    • 2002
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

예방 용접 Overlay가 원전 가압기 이종금속용접부 잔류응력 완화에 미치는 영향 (Effect of Preemptive Weld Overlay on Residual Stress Mitigation for Dissimilar Metal Weld of Nuclear Power Plant Pressurizer)

  • 송태광;배홍열;전윤배;오창영;김윤재;이경수;박치용
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.873-881
    • /
    • 2008
  • Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a preemptive weld overlay(PWOL). In pressurized water reactor(PWR) dissimilar metal weld is susceptible region for primary water stress corrosion cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen

  • Sinjlawi, Abdullah;Chen, Junjie;Kim, Ho-Sub;Lee, Hyeon Bae;Jang, Changheui;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2552-2564
    • /
    • 2020
  • The crevice stress corrosion cracking (SCC) susceptibility of austenitic stainless steels was evaluated in simulated pressurized water reactor (PWR) environments. To simulate the abnormal condition in temporary clamping devices on leaking small bore pipes, crevice bent beam (CBB) tests were performed in the oxygenated as well as hydrogenated conditions. No SCC cracks were found for SS316 in both conditions. SS304 also showed good resistance in the hydrogenated condition. However, all SS304 specimens showed SCC cracks in the oxygenated condition, indicating poor crevice SCC resistance. It was found that residual ferrites were selectively dissolved because of the galvanic corrosion coupled with the neigh-bouring austenite phase, resulting in SCC initiation in SS304. Crack morphologies were mostly transgranular assisted by the damaged δ-ferrite and deformation-induced slip bands.

Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feedwater line break

  • Jo, Jong Chull;Jeong, Jae-Jun;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1029-1040
    • /
    • 2021
  • For the structural integrity evaluation of pressurized water reactor (PWR) steam generator (SG) tubes subjected to transient hydraulic loading, determination of the tube-to-tube gap velocity and static pressure distributions along the tubes is prerequisite. This paper addresses both computational fluid dynamics (CFD) and analytical approaches for predicting the tube-to-tube gap velocity and static pressure distributions during blowdown following a feedwater line break (FWLB) accident at a PWR SG. First of all, a comparative study on CFD calculations of the transient velocity and pressure distributions in the SG secondary sides for two different models having 30 or no tubes is performed. The result shows that the velocities of sub-cooled water flowing between any adjacent two tubes of a tubed SG model during blowdown can be roughly estimated by applying the specified SG secondary side porosity to those of the no-tubed SG model. Secondly, simplified analytical approximate solutions for the steady two-dimensional SG secondary flow velocity and pressure distributions under a given discharge flowrate are derived using a line sink model. The simplified analytical solutions are validated by comparing them to the CFD calculations.

원자력발전소 2차측 습증기계통 주요지점별 부식 발생현황 분석 (Analysis on Formation of Corrosion Products in Secondary Steam-Water System of Nuclear Power Plant)

  • 이경희;한호석;신성용;성기방;이영우
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.138-147
    • /
    • 2019
  • Pipes and components of the secondary system in the pressurized water reactor (PWR) are mainly comprised of manufactured carbon steel. Thus, the generated carbon steel corrosion products are transported into the steam generator and deposited, thereby deteriorating the integrity of the steam generator. Environmental condition in the secondary system of the PWRs differs across different locations. So, the corrosion rate and types of corrosion products depend on specific locations in the secondary system. In this study, the quantity and chemical compositions of corrosion products generated in various locations that vary in different temperatures and chemistry conditions were investigated. As a result of evaluating the PWR "Unit A" that is in current operation, the amount of corrosion products generated in the section of high temperature feedwater system was identified as the largest source in the secondary system. Major components of corrosion products were iron oxides such as magnetite, hematite, and lepidocrocite.

A Study on the Determinants of Decommissioing Cost for Nuclear Power Plant (NPP)

  • Cha, Hyungi;Yoon, Yongbeum;Park, Soojin
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.87-111
    • /
    • 2021
  • Nuclear power plants (NPPs) produce radioactive waste and decommissioning this waste entails additional cost; determining these costs for various types and specifications of radioactive waste can be challenging. The purpose of this study is to identify major determinants of the decommissioning cost and their impact on NPPs. To this end, data from defunct NPPs were gathered and 2SLS (Two Stage Least Squares) regression models were developed to investigate the major contributors depending on the reactor types, viz. PWR (Pressurized Water Reactors) and BWR (Boiling Water Reactors). Additionally, cost estimations and the Monte Carlo simulation were performed as part of performance validation. Our study established that the decommissioning costs are primarily influenced by the level of radioactivity in the decommissioned waste, which can be realized from operational factors like operation period, overall efficiency, and plant capacity, as well as from duration of decommissioning and labour cost. While our study provides an improved statistical approach to recognize these factors, we acknowledge that our models have limitations in forecasting accurately which we envisage to bolster in future studies by identifying more substantive factors.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제18권spc호
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.