• Title/Summary/Keyword: pressurized pipe

Search Result 68, Processing Time 0.022 seconds

THE CORRELATION OF PRESSURE DROP FOR SURFACE ROUGHNESS AND CURVATURE RADIUS IN A U-TUBE (표면 조도와 곡률 반경에 대한 U-자관 압력 손실의 상관관계)

  • Park, J.H.;Chang, S.M.;Lee, S.Y.;Jang, G.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this research, we studied the pressure drop affecting on the internal surface roughness and the curvature radius of a U-tube, which is used for the cooling system in PWR(Pressurized Water Reactor). Using ANSYS-FLUENT, a commercial code based on CFD(Computational Fluid Dynamics) technique, we compared a Moody chart with the Darcy friction factor changed by a range of various surface roughness and Reynolds numbers of a straight pipe model. We studied the effect giving variation about a range of various surface roughness and the curvature radius of the full scale U-tube model. The material of the heat transfer tube is Inconel 690 used in the steam generator. We compared the velocity distribution of selected 4 locations, and derived the correlation between the surface roughness and the pressure drop for the U-tube of each representative curvature radius using the linear regression method.

A Study on the Measurement of the Internal Crack in Flange Welding Zone by Digital Shearography (전자전단 간섭법을 이용한 플랜지 용접부 내부 결함 측정에 관한 연구)

  • Kim, Jeong-Pil;Kang, Young-June;Park, Sang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • There is a many kinds with nondestructive testing such as RT and UT representatively. Referred before two testing methods there is a limit which is spatial such as nuclear pipe, small vessel, sealing up vessel. So a new technique needs to overcome the limit which is spatial. shearography will be able to overcome the limit which is spatial. This paper introducing shearography which was known as non-contact full-field testing method and It is an interferometric technique for measurement of surface deformation such as displacement or displacement gradient. Also, a research about internal defect of the flange welding zone was accomplished. About variation with method pressurized with the Gaseous Nitrogen. Phase map where is various were measured according to changing a sheared direction, size of crack and loaded pressure. Consequently, crack quantitatively to be detected qualitatively was measured by using shearography.

A Study of Manufacturing AZ91D Mg Alley Wheel (마그네슘 합금제 휠 제조에 관한 연구)

  • Kim, Jung-Gu;Shin, Il-Seong;Kum, Dong-Hwa
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.715-723
    • /
    • 1999
  • Magnesium has been used as wheel materials in the automotive industry for more than 20 years. The magnesium wheels, which are lighter by 25% than aluminum wheels, provide easy controllability providing excellent road holding by the reduction of weight. The purpose of this work is to develop cast AZ91D alloy wheel by sand cast and permanent mold cast. The fluxless melting with the protective gas $(SF_6+CO_2)$ was Performed to eliminate oxidation of melt and impurity. The transfer of molten magnesium to the mold was done by using gas-pressurized Pump system through the heated pipe. The mechanical properites of AZ91D alloy wheel were investigated as a function of heat treatment, ingot composition.

  • PDF

Verification Studies for Field Peformance of Micropiling (성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험)

  • Goo, Jeong-Min;Lee, Ki-Hwan;Cho, Young-Jun;Choi, Chang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF

Load transfer characteristics and bearing capacity of micropiles (마이크로파일의 하중전이특성 및 지지성능 분석)

  • Goo, Jeong-Min;Choi, Chang-Ho;Cho, Sam-Deok;Lee, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.899-904
    • /
    • 2009
  • This paper presents the analysis result of load-transfer mechanism and pile movements associated with the development of frictional resistance to understand the engineering characteristics of micropile behavior. An field load tests were performed for two different types of micropiles and they are (i) thread bar reinforcement with D=50mm and (ii) hollow steel pipe reinforcement with $D_{out}$=82.5mm and $D_{in}$=60.5mm and wrapped with woven geotextile for post-grouting. The load test results indicated that micropiling with pressured grouting provided better load-transfer characteristics than micropiling with gravity grouting under both compressive and tensile loading conditions in that unit skin frictional resistance is well distributed along installation depth. The unit weight and unconfined compressive strength of cured grout were obtained for each piling method. The strength and unit weight of micropile with pressured grouting was higher than those with gravity grouting. The fact that load bearing quality with pressured grouting is better than that of gravity grouting could be attributed to the dense mutual adhesion between surrounding ground and pile due to pressurized grouting method and better grout quality.

  • PDF

Evaluation of Creep Crack Growth Failure Probability at Weld Interface Using Monte Carlo Simulation (몬테카를로 모사에 의한 용접 계면에서의 크리프 균열성장 파손 확률 평가)

  • Lee Jin-Sang;Yoon Kee-Bong
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2005
  • A probabilistic approach for evaluating failure risk is suggested in this paper. Probabilistic fracture analyses were performed for a pressurized pipe of a Cr-Mo steel reflecting variation of material properties at high temperature. A crack was assumed to be located along the weld fusion line. Probability density functions of major variables were determined by statistical analyses of material creep and creep crack growth data measured by the previous experimental studies by authors. Distributions of these variables were implemented in Monte Carlo simulation of this study. As a fracture parameter for characterizing growth of a fusion line crack between two materials with different creep properties, $C_t$ normalized with $C^*$ was employed. And the elapsed time was also normalized with tT, Resultingly, failure probability as a function of operating time was evaluated fur various cases. Conventional deterministic life assessment result was turned out to be conservative compared with that of probabilistic result. Sensitivity analysis for each input variable was conducted to understand the most influencing variable to the analysis results. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E.;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3567-3579
    • /
    • 2022
  • This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.

Research on the calculation method of sensitivity coefficients of reactor power to material density based on Monte Carlo perturbation theory

  • Wu Wang;Kaiwen Li;Yuchuan Guo;Conglong Jia;Zeguang Li;Kan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4685-4694
    • /
    • 2023
  • The ability to calculate the material density sensitivity coefficients of power with respect to the material density has broad application prospects for accelerating Monte Carlo-Thermal Hydraulics iterations. The second-order material density sensitivity coefficients for the general Monte Carlo score have been derived based on the differential operator sampling method in this paper, and the calculation of the sensitivity coefficients of cell power scores with respect to the material density has been realized in continuous-energy Monte Carlo code RMC. Based on the power-density sensitivity coefficients, the sensitivity coefficients of power scores to some other physical quantities, such as power-boron concentration coefficients and power-temperature coefficients considering only the thermal expansion, were subsequently calculated. The effectiveness of the proposed method is demonstrated in the power-density coefficients problems of the pressurized water reactor (PWR) moderator and the heat pipe reactor (HPR) reflectors. The calculations were carried out using RMC and the ENDF/B-VII.1 neutron nuclear data. It is shown that the calculated sensitivity coefficients can be used to predict the power scores accurately over a wide range of boron concentration of the PWR moderator and a wide range of temperature of HPR reflectors.

A Study for Comparison of Consequence Analysis for Buried Pipeline Considering the Depth Factor (깊이 인자를 고려한 매설배관의 사고피해영향 비교 분석에 관한 연구)

  • Han, Seung-Hoon;Seol, Ji-Woo;Yoo, Byong-Tae;Tae, Chan-Ho;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.9-16
    • /
    • 2016
  • Buried pipe system is subject to leak or rupture due to internal and external defects with age. Especially, if the pipeline is designed for pressurized gas, the leak can wreak a devastating on its surrounding area. The current method of setting up underground gas pipeline is based on OGP criteria of applying one tenth of the inner pipe pressure. The criteria is applied irrespective of their burial depth or pipe's properties. At times, even the whole safety measures are totally ignored. Considering the magnitude of possible damage from a gas leakage, a precise analytical tool for the risk assessment is urgently needed. The study was conducted to assess possible scenarios of gas accidents and to develop a computer model to minimize the damage. The data from ETA was analyzed intensively, and the model was developed. The model is capable of predicting jet fire influence area with comprehensive input parameters, such as burial depth. The model was calibrated and verified by the historic accident data from Edison Township, New Jersey, the United States. The statistical model was also developed to compare the results of the model in this study and the existing OGP model. They were in good agreement with respect to damage predictions, such as radiation heat coming from 10 meters away from the heat source of gas flame.

New tunnel reinforcement method using pressurized cavity expansion concept (천공홀 가압 팽창 개념을 도입한 터널 보조 신공법 연구)

  • Cho, In-Sung;Park, Jeong-Jun;Kim, Jong-Sun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.407-416
    • /
    • 2010
  • A new tunnel auxiliary method is proposed in this paper which utilizes the concept of cavity expansion for tuunel reinforcement by forming an umbrella arch on the roof of tunnel. When an inflatable pipe is inserted and expanded by pressure in the bore hole of umbrella arch, the ground around the bore hole can be compacted so that the stress condition above the tunnel perimeter is favorably changed. In order to verify the reinforcement effect of new concept, pilot-scale chamber test, trapdoor test and numerical analysis were performed and compared. In pilot-scale chamber test, three types of inflatable pipes are tested to verify the capability of expansion, and the results arc compared with analytical results obtained by applying cavity expansion theory and with results obtained from finite clement analysis, and the experimental results showed agreeable matches with analytical and numerical ones. Numerical analysis of a tunnel and trapdoor test applied with the inflatable pipes are also performed to figure out the reinforcement effect of the proposed techniques, and the results implied that the new method with 3 directional inflatable pipe (no pressure to downward direction) can contribute to reduce tunnel convergence and face settlement.