• 제목/요약/키워드: pressure-viscosity coefficient

검색결과 74건 처리시간 0.019초

스월분무특성에 미치는 점성의 영향 (The Effect of Viscosity on the Spray Characteristics of Pressure Swirl Atomizer)

  • 윤석주;조대진
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.24-29
    • /
    • 1999
  • In the pressure swirl atomizer, the liquid is injected through tangential passages into a swirl chamber, from which it emerges with both tangential and axial velocity components to form a thin conical sheet at the nozzle exit. This sheet rapidly attenuates, finally disintegrating into ligaments and then drops. The purpose of this study is to measure the spray characteristics according to variation of viscosity of the spray produced by the pressure swirl atomizer. The nozzle tested here were especially designed for this investigation. The discharge coefficient is determined by measuring the volume flow rate with a flow meter and the cone angle of the liquid sheets issuing from the nozzle is obtained from series of photographs of the sheet for various liquid viscosity and injection pressure. And mean drop size is measured by image processing method. It is found that the geometrical characteristics of the nozzle and the variation of viscosity were the influential parameters to determine the spray characteristics such as the cone angle, discharge coefficients and SMD.

  • PDF

압력에 따른 점도변화가 그루브를 한 유압 스푸울 밸브에 미치는 영향 (The Effect of Pressure on Viscosity in Grooved Hydraulic Spool Valves)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제22권6호
    • /
    • pp.307-313
    • /
    • 2006
  • In this paper, a theoretical analysis is carried out to study the effect of viscosity variation with pressure in multiply grooved moving hydraulic spool valves. Analytical expressions for pressure distribution in the clearance and leakage flowrate are obtained solving one-dimensional Reynolds. For constant viscosity, an analytical expression for lateral force is also presented. The results showed that variation of viscosity with pressure affect highly on pressure distribution, leakage flowrate and lateral forces in hydraulic spool valves. Therefore additional intensive studies, including numerical analysis for two-dimensional Reynolds, should be required to investigate detailed lubrication characteristics of spool valves for high pressure.

Estimation of the Lubricating Oil Rheology at High Pressure Based on Phase Diagram

  • Rahman, Md.Z.;Ohno, N.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.85-86
    • /
    • 2002
  • For rheology investigation of lubricating oils, first phase diagrams were made from determined free volume based on density measurements and the temperature-pressure relation was estimated using the expansion coefficient of free volume and the temperature-pressure relation of the viscoelastic transition point. Next, the authors proposed the density-pressure-temperature relation and the viscosity-pressure-temperature relation of the tested oils based on the free volume and the phase diagrams. Moreover, it was shown that the Ehrenfest equation or the gradient of the phase diagram is closely related to the expansion coefficient of free volume.

  • PDF

마찰조건에 따른 고강도 강판의 마찰특성 평가 (Evaluation of Friction Characteristics for High-Strength-Steel Sheets Depending on Conditions)

  • 김주업;허재영;윤일채;송재선;윤국태;박춘달
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.381-386
    • /
    • 2015
  • Recently, high-strength-steel sheets have been used extensively for increasing fuel-efficiency and stability in automobiles. A study on the characteristics regarding friction factors is required because high-strength-steel sheets have higher contact pressure at the tool interface as compared to low-strength steel sheets. For the current study, a sheet friction test was used to examine the influence of several factors on friction. The friction tests were performed on two types of sheet steels (SPFC590 and SPFC980) to obtain friction coefficients as a function of contact pressure, surface roughness, lubricant viscosity, and speed. Based on the experimental results for SPFC590 and SPFC980, the friction coefficient decreased with increasing contact pressure, but the friction coefficient increased with increasing surface roughness. Also, the friction coefficient decreased with increasing lubricant viscosity and decreasing speed.

연소실 저압변화와 압력-점도지수가 디젤엔진 고압피스톤의 핀-보스 베어링 윤활에 미치는 영향 연구 (A Study on Effects of the Changes in Lower Combustion Pressures and Pressure-Viscosity Index on Pin-Boss Bearing Lubrication of a Diesel Engine Piston Receiving High Combustion Pressure)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제24권2호
    • /
    • pp.55-62
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated how the changes in combustion pressure at exhaust and intake stroke and the pressure-viscosity index effect on the film pressure distribution.

초고강도강판 마찰특성의 실험적 규명 (Experimental Determination of Friction Characteristics for Advanced High Strength Steel Sheets)

  • 김남진;금영탁
    • 소성∙가공
    • /
    • 제22권4호
    • /
    • pp.223-228
    • /
    • 2013
  • The friction coefficients of advanced high strength steel sheets were experimentally determined. In the friction test, the pulling and holding forces acting on the sheet for various friction conditions, such as lubricant viscosity, pulling speed, blank holding pressure, sheet surface roughness, and hardness of the sheet were measured and the friction coefficient was calculated based on Coulomb's friction law. While the friction coefficient, generally, decreases as the value of friction factor increases, the factor associated with the sheet surface roughness shows U shape behavior for the friction coefficient. Furthermore, the relationship between friction coefficient and the wear volume, which was computed for the roughness of both sheet surfaces and the friction area, is linearly proportional.

물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발 (Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor)

  • 김덕진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

액체 점도에 따른 Y-jet 노즐 내부 유동 및 분무 특성의 변화 (Effect of liquid viscosity on internal flow and spray characteristics of Y-jet atomizers)

  • 송시홍;이상용
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.4053-4061
    • /
    • 1996
  • Internal flow characteristics within Y-jet atomizers and the local drop size distribution and cross-sectional averaged drop size at the outside were investigated with the liquid and air injection pressures, mixing port length of atomizers, and the liquid properties taken as parameters. To examine the effect of the liquid viscosity, glycerin-water mixtures were used in this study. The liquid viscosity plays only a minor role in determining the internal flow pattern and the spatial distribution shape of drops, but the drop sizes themselves generally increase with increasing of the liquid viscosity. An empirical correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results; the liquid discharge coefficient strongly depends on the liquid flow area at the mixing point which is proportional to the local volumetric quality(.betha.$_{Y}$), and the volumetric quality was included in the correlation. Regardless of the value of the liquid viscosity, the compressible flow through the gas port was well represented by the polytropic expansion process(k=1.2), and the mixing point pressure could be simply correlated to the aspect ratio( $l_{m}$/ $d_{m}$) of the mixing port and the air/liquid mass flow rate ratio( $W_{g}$/ $W_{f}$) as reported in the previous study.udy.udy.y.

타원형 저어널 베어링의 동특성 해석에 관한 연구 (A Study on Dynamics Characteristic Analysis of Elliptical Journal Bearing)

  • 박성환;오택열
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.20-27
    • /
    • 2002
  • An analysis model for an elliptical fluid film bearing is described. The principles of hydrodynamic lubrication are outlined together with an expanded version of the governing pressure field equation as related to elliptical journal bearing. Finite element method approximations are given for the pressure field equation and a temperature model, both related to the fluid film thickness. The thermal effects in the lubricant viscosity, lubricant film thickness, variation of the journal rotating speed and influence of turbulence are investigated in this paper A finite element model and an iterative computational process are described, whereby full simultaneously converged field solutions for fluid film thickness, temperature, viscosity, pressure, stiffness and damping coefficient are obtained.

튜브 액압성형 공정의 확관영역에서 소재 및 윤활에 따른 마찰 특성의 실험적 연구 (Experimental investigation of friction in expansion zone of tube hydroforming with material and lubricant)

  • 이건엽;임홍섭;이성문;이혜경;정기석;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.359-362
    • /
    • 2008
  • In this study, friction test was proposed to obtain coefficient of friction between tube and die in expansion zone of tube hydroforming and friction coefficients were evaluated at different materials, viscosity of lubricants and internal pressures. For this study, STKM11A and SUS tubes were prepared. The tube was expanded by an internal pressure against the tool wall. The tube was expanded by an internal pressure against the tool wall. By pushing the tube through the tool, a friction force at the contact surface between the tube and the tool occurs. From the measured geometries and FE analysis, the friction coefficients between tube and die at the expansion zone in tubular hydroforming can be estimated. The effects of the various internal pressures, viscosity of lubricants, tube materials and tube thickness on friction coefficients are discussed.

  • PDF