• Title/Summary/Keyword: pressure-driven

Search Result 656, Processing Time 0.027 seconds

Design Concept of Hybrid SIT (복합안전주입탱크(Hybrid SIT) 설계개념)

  • Kwon, Tae-Soon;Euh, Dong-Jin;Kim, Ki-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.104-108
    • /
    • 2014
  • The recent Fukushima nuclear power plant accidents shows that the core make up at high RCS pressure condition is very important to prevent core melting. The core make up flow at high pressure condition should be driven by gravity force or passive forces because the AC-powered safety features are not available during a Station Black Out (SBO) accident. The reactor Coolant System (RCS) mass inventory is continuously decreased by releasing steam through the pressurizer safety valves after reactor trip during a SBO accident. The core will be melted down within 2~3 hours without core make up action by active or passive mode. In the new design concept of a Hybrid Safety Injection Tank (Hybrid SIT) both for low and high RCS pressure conditions, the low pressure nitrogen gas serves as a charging pressure for a LBLOCA injection mode, while the PZR high pressure steam provides an equalizing pressure for a high pressure injection mode such as a SBO accident. After the pressure equalizing process by battery driven initiation valve at a high pressure SBO condition, the Hybrid SIT injection water will be passively injected into the reactor downcomer by gravity head. The SBO simulation by MARS code show that the core makeup injection flow through the Hybrid SIT continued up to the SIT empty condition, and the core heatup is delayed as much.

Estimation of the Reliability of Water Distribution Systems using HSPDA Model and ADF Index (HSPDA 모형 및 ADF index를 이용한 상수관망의 신뢰도 산정)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.201-210
    • /
    • 2010
  • In this study, new methodology to estimate the reliability of a water distribution system using HSPDA model is suggested. In general, the reliability of a water distribution system can be determined by estimating either the ratio of the required demand to the available demand or the ratio of the number of nodes with sufficient pressure head to the number of nodes with insufficient pressure head when the abnormal operating condition occurs. To perform this approach, hydraulic analysis under the abnormal operating condition is essential. However, if the Demand-Driven Analysis (DDA) which is dependant on the assumption that the required demand at a demand node is always satisfied regardless of actual nodal pressure head is used to estimate the reliability of a water distribution system, the reliability may be underestimated due to the defect of the DDA. Therefore, it is necessary to apply the Pressure-Driven Analysis (PDA) having a different assumption to the DDA's which is that available nodal demand is proportion to nodal pressure head. However, because previous study used a semi-PDA model and the PDA model which had limited applicability depending on the characteristics of a network, proper estimation of the reliability of a water distribution system was impossible. Thus, in this study, a new methodology is suggested by using HSPDA model which can overcome weak points of existing PDA model and Available Demand Fraction (ADF) index to estimate the reliability. The HSPDA can simulate the hydraulic condition of a water distribution system under abnormal operating condition and based on the hydraulic condition simulated, ADF index at each node is calculated to quantify the reliability of a water distribution system. The suggested model is applied to sample networks and the results are compared with those of existing method to demonstrate its applicability.

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

A Study on Combustion-Driven Oscillations in a Surface Burner (표면연소기의 연소진동음에 관한 연구)

  • Han, Heekab;Kwon, Youngpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

A Numerical Study on Gas Mixing Time in a Low-Pressure (Driven) Section of a Shock Tube (충격파관 저압실내 가스 혼합시간 예측에 관한 수치해석)

  • Wang, YuanGang;Cho, Cheon Hyeon;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.23-28
    • /
    • 2017
  • The fuel and oxidizer mixing process in the shock tube driven section is simulated numerically. The boundary condition is set based on an shock tube experimental condition. The objective is to predict the gas mixing time for experiments. In the experiment, the amount of fuel to be injected is determined in advance. Then, according to duration of fuel injection, 5 cases with the same fuel mass but different fuel mass flow rate are simulated. After fuel is injected into the driven section, the fuel and air will be mixed with each other through convection and diffusion processes. The mixing time is predicted numerically for experiments.

Earthward Flow Bursts in the Magnetotail Driven by Solar Wind Pressure Impulse

  • Kim, Khan-Hyuk;Kwak, Young-Sil;Lee, Jae-Jin;Hwang, Jung-A
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • On August 31, 2001, ${\sim}$ 1705 - 1718 UT, Cluster was located near the midnight magnetotail, GSE (x, y, z) ${\sim}$ (-19, - 2,2) RE, and observed fast earthward flow bursts in the vicinity of the neutral sheet. They occurred while the tail magnetic field suddenly increased. Using simultaneous measurements in the solar wind, at geosynchronous orbit, and on the ground, it is confirmed that tail magnetic field enhancement is due to an increased solar wind pressure. In the neutral sheet region, strongly enhanced earthward flow bursts perpendicular to the local magnetic field $(V_{{\perp}x})$ were observed. Auroral brightenings localized in the pre-midnight sector (${\sim}$ 2200 - 2400 MLT) occurred during the interval of the $V_{{\perp}x}$ enhancements. The $V_{{\perp}x}$ bursts started ${\sim}$ 2 minutes before the onset of auroral brightenings. Our observations suggest that the earthward flow bursts are associated with tail reconnection directly driven by a solar wind pressure impulse and that $V_{{\perp}x}$ caused localized auroral brightenings.

Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber (소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.19-28
    • /
    • 1995
  • Based on the various test data acquired in the field, the large pressure chamber and the small pressure chamber, uplift behaviors and method of determining the ultimate uplift capacity of pile driven in small pressure chamber were studied. After uplift pile experienced 2 or 3 sudden slip due to increase of uplift load, complete pullout failure was occurred. Thus, it appears that the ultimate uplift capacity could be identified as the load at displacement where first slip occurs. The ultimate uplift capacity might be determined in every test and the disturbance after first uplift test could be recovered by adding one blow of the drop hammer, which had to depend on the model pile capacity.

  • PDF

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

Experimental study on flow field behind backward-facing step using detonation-driven shock tunnel

  • Kim, T.H.;Yoshikawa, M.;Narita, M.;Obara, T.;Ohyagi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.85-92
    • /
    • 2004
  • As a research to develop a SCRAM jet engine is actively conducted, a necessity to produce a high-enthalpy flow in a laboratory is increasing. In order to develop the SCRAM-jet engine, stabilized combustion in a supersonic flow-field should be attained, in which a duration time of flow is extremely short. Therefore, a mixing process of breathed air and fuel, which is injected into supersonic flow-fields is one of the most important problem. Since, the flow inside SCRAM jet engine has high-enthalpy, an experimental facility is required to produce such high-enthalpy flow-field. In this study, a detonation-driven shock tunnel was built and was used to produce high-enthalpy flow. Further-more, SCRAM jet engine model equipped backward-facing step was installed at test section and flow-fields were visualized using color-schlieren technique and high speed video camera. The fuel was injected perpendicular to the flow of Mach number three behind backward-facing step. The height of the step, distance of injection and injection pressure were changed to investigate the effects of step on a mixing characteristic between air and fuel. The schlieren photograph and pressure histories show that the fuel was ignited behind the step.

  • PDF