• 제목/요약/키워드: pressure tube

검색결과 2,131건 처리시간 0.024초

대체냉매 HFC-134a의 모세관 성능에 관한 수치해석적 연구 (Investigation of the Performance of the Alternative Refrigerant HFC-134a through Capillary tube : Numerical Analysis)

  • 김창년;박영무
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.169-178
    • /
    • 1993
  • Performance charts of capillary tubes for R-134a are presented. The calculation is based on the one-dimensional, adiabatic flow through capillary tube. The length of capillary tube changes with inlet pressure, mass flux, inlet quality(or subcooling), and inside diameter. The length for R-134a is shorter by 12.5~23% than that for R-12 as mass flux varies, by 13~18.5% as inlet pressure changes, by 15~15.2% as inside diameter changes, and by 3.6~20% as subcooling(or quality) changes. In general, the length for R-134a is shorter than that for R-12 by 10~20%. Pressure drop per unit length for R-134a is greater than that for R-12 since specific volume of R-134a is larger that of R-12 and vapor pressure of R-134a is greater than that of R-12. Flash point of R-134a is ahead of that of R-12.

  • PDF

불균일 공기분포와 관의 종류에 따른 핀-관 응축기의 성능 특성에 관한 해석적 연구 (Numerical Study on the Performance of a Fin-and-Tube Condenser with Non-Uniform Air Distribution and Different Tube Types)

  • 조다영;함형창;박창용
    • 설비공학논문집
    • /
    • 제24권12호
    • /
    • pp.858-866
    • /
    • 2012
  • A numerical study was performed to predict the performance of a fin-and-tube condenser. A condenser model was developed and verified by comparing the simulation results with experimental data for a R410A condenser in a residential air-conditioning system. The prediction error was 0.07% and -5.77% for the condenser capacity and pressure drop, respectively. In simulation results, the capacity and pressure drop of the condenser with even air velocity distribution were 0.67% and 12.93% higher than those with uneven distribution of air velocity. It was predicted by the model that the refrigerant distribution at the condenser inlet to the two first passes was not significantly influenced by the air distribution. The simulation results presented that the 1.49% of capacity and 64.6% of pressure drop were reduced by replacing helical microfin tubes with smooth tubes for the condenser.

냉방용 팬코일 유닛 열교환기의 열전달 및 압력강하 특성 실험연구 (Experimental Study on Heat Transfer and Pressure Drop of Heat Exchangers for Cooling Fan Coil Unit)

  • 권영철;고국원;권정태
    • 한국산학기술학회논문지
    • /
    • 제9권3호
    • /
    • pp.599-604
    • /
    • 2008
  • 본 연구에서는 냉방운전 시에 팬코일 유닛에 사용되는 핀-관 열교환기의 공기측 열전달 능력과 압력강하를 실험을 통하여 조사하였다. 실험을 위하여 칼로리미터와 항온수조를 이용하였다. 사용된 핀은 슬릿핀이며 5종 열교환기에 대해 배관회로와 실험조건을 변화하면서 실험하였다. 공기-물 정격유량에서의 냉방능력은 열교환기 공급 물온도가 낮은 조건이 우수하였으며, 배관회로에 따른 냉방능력은 배관 내 물흐름이 U형보다 ㄹ형인 경우에 더 크게 나타났다. 물유량이 증가할수록 냉방능력은 일정비율로 증가하였으며, 열교환기 공급 물 온도가 낮을 때 우수하였다. 공급 물 온도가 낮은 조건에서 많은 응축수가 생성되어 공기측 압력강하는 크게 나타났다.

Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feedwater line break

  • Jo, Jong Chull;Jeong, Jae-Jun;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1029-1040
    • /
    • 2021
  • For the structural integrity evaluation of pressurized water reactor (PWR) steam generator (SG) tubes subjected to transient hydraulic loading, determination of the tube-to-tube gap velocity and static pressure distributions along the tubes is prerequisite. This paper addresses both computational fluid dynamics (CFD) and analytical approaches for predicting the tube-to-tube gap velocity and static pressure distributions during blowdown following a feedwater line break (FWLB) accident at a PWR SG. First of all, a comparative study on CFD calculations of the transient velocity and pressure distributions in the SG secondary sides for two different models having 30 or no tubes is performed. The result shows that the velocities of sub-cooled water flowing between any adjacent two tubes of a tubed SG model during blowdown can be roughly estimated by applying the specified SG secondary side porosity to those of the no-tubed SG model. Secondly, simplified analytical approximate solutions for the steady two-dimensional SG secondary flow velocity and pressure distributions under a given discharge flowrate are derived using a line sink model. The simplified analytical solutions are validated by comparing them to the CFD calculations.

Nucleate Pool Boiling of a Structured Enhanced Tube Used in a Flooded Refrigerant Evaporator

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Choi, Kuk-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.23-28
    • /
    • 2000
  • In this study, pool boiling performance of a structured enhanced tube for a flooded refrigerant evaporator was experimentally investigated. Tests were performed for three different refrigerants(R-11, R-123, R-l34a). Compared with the heat transfer coefficients of the smooth tube, the heat transfer coefficients of the enhanced tube were 6.6 times larger for R-11, 6.0 times larger for R-123 and 3.5 times larger for R-l34a, which are comparable with the performance of foreign products. The heat transfer coefficients of R-l34a was higher than those of R-11 or R-123, both for the enhanced tube and for the smooth tube. At 4.4$^\circ$C saturation temperature, however, the heat transfer coefficients of R-l34a was approximately the same as those of R-11. The effect of the saturation pressure on the boiling performance was similar to that of the smooth tube-the heat transfer coefficient increased as the saturation pressure increased.

  • PDF

Pressure Drop in Two-Phase Flow Boiling of R134a, R123 and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.70-78
    • /
    • 2004
  • An experimental study on the pressure drop during flow boiling for pure refrigerants Rl34a and R123, and their mixture was carried out in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6㎫ and in the ranges of heat flux 5-50㎾/$m^2$, vapor quality 0-100 percent and mass velocity of 150-600 kg/$m^2$s. Generally, the two-phase frictional multiplier is used to predict the frictional pressure drop during the two-phase flow boiling. The obtained results have been compared to the existing various correlations for the two-phase multiplier. Also, the frictional pressure drop was compared to a few available correlations; The Lockhart-Martinelli correlation considerally overpredicted the frictional pressure drop data for mixture as well as pure components in the entire mass velocity ranges employed in the present study, while the Chisholm correlation underpredicted the present data. The Friedel correlation was found to satisfactorily correlate the frictional pressure drop data except for a low quality region.

사출성형 공정에서 고화층이 캐비티 압력에 미치는 영향 (Frozen Layer Effect on Internal Cavity Pressure during Injection Molding)

  • 이호상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.474-479
    • /
    • 2005
  • Experimental and theoretical studies of internal cavity pressure during injection molding of a spiral tube cavity were carried out. The frozen layer thickness and the evolution of internal cavity pressure were calculated using a commercial software (C-MOLD). The evolution of the internal cavity pressure was recorded during injection molding of polystyrene into a spiral tube mold. To explain the differences observed between the calculated and measured internal cavity pressure, a pressure correction factor (PCF) was introduced based on the plane stress theory. This factor was determined by analyzing the stress state in the melt and calculating the frozen layer thickness near the mold wall. The corrected and experimental pressures have been compared to validate the applicability of the pressure correction factor.

  • PDF

두 연속 터널을 전파하는 압축파의 실험적 연구 (Experimental study of compression waves propagating into two-continuous tunnels)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향 (The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion)

  • 이정민;김병민;정영득;조훈;조형호
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

열전달 촉진관에서 신냉매의 풀비등 열전달계수 (Pool Boiling Heat Transfer Coefficients of New Refrigerants on Various Enhanced Tubes)

  • 박진석;김종곤;정동수;김영일
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.710-719
    • /
    • 2001
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, HFC134a, HCFC22, HFC407C, HFC410A and HFC32 wre measured on a horizontal smooth tube, 26 fpi low fin tube, Turbo-B and Thermoexcel-E enhanced tubes. AN experimental apparatus was designed such that all tubes heated by cartridge heaters could be installed at the same time to save the refrigerant. Data were taken in the pool of $7^{\circ}C$ with the heat flux decreasing from 80 kW/$m^2\;to\;5kW/m^2$. Test results showed that HTCs of pure refrigerants and those of a azeotrope were greatly influenced by reduced pressure. HTCs of HFC407C were 21~25% lower than those of HCFC22 due to mass transfer resistance. For all refrigerants, enhanced tubes with sub-surface and sub-tunnels showed the largest heat transfer enhancement. Especially the largest heat enhancement was obtained for HCFC123 whose reduced pressure is the lowest among al the refrigerants tested. This indicates that either Turbo-B or Thermoexcel-E enhanced tube would be the best choice when used with a low vapor pressure refrigerant.

  • PDF