• 제목/요약/키워드: pressure trajectory

검색결과 141건 처리시간 0.022초

중개궤도를 이용한 지구-달 천이궤적의 설계 및 분석 (The Earth-Moon Transfer Trajectory Design and Analysis using Intermediate Loop Orbits)

  • 송영주;우진;박상영;최규홍;심은섭
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권2호
    • /
    • pp.171-186
    • /
    • 2009
  • 이 연구에서는 미래 한국의 달 탐사에 대비, 지구-달 천이궤적을 설계하고 분석하였다. 궤적 설계는 최소연료로 지구 주차궤도에서부터 달 임무궤도까지 도달하는 모든 단계에 대해서 실시하였으며 미래 한국의 달 탐사 개발 계획에 실질적인 도움이 되기 위해 2017년, 2020년, 2022년으로 각각 나누어 설계를 하였다. 탐사선의 운동방정식의 구현을 위하여 태양, 지구, 달의 중력에 의한 섭동력이 포함된 N체 운동 방정식을 사용하였으며 보다 실질적인 우주환경의 모사를 위하여 지구의 비대칭 중력장(Geopotential), 태양 복사압(Solar radiation pressure) 그리고 달의 J2 섭동에 의한 영향도 고려하였다. 임무 설계를 위해 가정된 추력은 순간 추력(Impulsive thrust)으로 가정하였으며 발사체의 성능은 현재 개발 예정인 KSLV-2로 가정하였다. 미래 한국의 가상 달 탐사선이 지구-달 천이 궤적(Trans Lunar trajectory)에 진입하는 방법으로는 지구 주차 궤도에서 직접 진입 하는 방법과 여러번의 타원 중개 궤도를 거친 후 지구-달 천이 궤적으로 진입하는 방법을 모두 이용하였다. 아울러 TLI(Trans Lunar Injection) 기동시 탐사선의 대전 지상국에서의 가시성에 따른 기동의 크기에 대한 영향이 분석되었다. 이 연구를 통한 임무 설계 결과는 달 탐사 임무 설계를 위한 발사 가능 시기(launch opportunity), 성공적인 임무 수행을 위한 임무 단계별 최적의 기동량 및 해당 궤도의 특성 그리고 다양한 임무 파라미터등의 해석을 포함하고 있다. 임무 설계 결과, 미래 한국이 쏘아 올릴 수 있는 달 탐사선의 전체 질량은 해당 임무의 수행시기 보다는 초기 지구 출발 궤도의 초기 고도와 발사제의 초기 궤도 투입 성능에 따라 더욱 크게 좌우됨을 확인하였다.

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.

정확한 대기오염물질 배출 지정 탐지를 위한 드론 비행 궤도에 관한 연구 (A Study on Drone Flight Trajectory for Accurate Detection of Air Pollutant Emission Designation)

  • 김수영;이석훈;정동원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.15-17
    • /
    • 2021
  • 이 논문에서는 정확한 대기오염물질 배출 지정 탐지를 위한 드론 비행 궤도 방법을 제안한다. 공단과 같이 공장이 많은 지역에서 감시가 소홀한 상황에 대기오염물질을 불법 배출하는 사업장들이 존재한다. 기존에는 드론을 이용하여 이러한 지역에서 대기오염물질을 측정하기 위한 연구들이 활발히 진행되었다. 드론을 활용한 측정 방법은 공장의 굴뚝 주변에 멈춰서 오염을 탐지하는 방식을 사용하지만, 기압과 바람 등의 환경 요소에 따라 대기오염물질 탐지가 부정확하다는 문제를 지닌다. 따라서 이 논문에서는 정확한 대기오염물질 배출 지정 탐지를 위한 드론 비행 궤도 방법을 제안한다. 제안 방법은 드론이 굴뚝을 회전하면서 위로 비행하는 스크류 궤도 비행 방법으로, 굴뚝의 전체 면적을 탐지하고 환경요소를 고려해 측정한다. 실험에서 제안 방법이 기존 방법보다 나은 성능을 보였다.

  • PDF

The Effect of Tai Chi Training on the Center of Pressure Trajectory While Crossing an Obstacle in Healthy Elderly Subjects

  • Kim, Hyeong-Dong
    • 한국전문물리치료학회지
    • /
    • 제15권4호
    • /
    • pp.27-33
    • /
    • 2008
  • The purpose of this study was to investigate the changes of the center of pressure (COP) trajectory in healthy elderly subjects while crossing an obstacle before and after participation in Tai Chi training. Forty healthy elderly subjects participated either in a 12-week intervention of Tai Chi training or in a health education program. The participants were divided into two groups (the experimental group and the control group). Subsequently, the participants were pre- and post-tested on crossing over an obstacle from a quiet stance. Participants in the experimental group received Tai Chi training that emphasized the smooth integration of trunk rotation, a shift in weight bearing from bilateral to unilateral support and coordination and a gradual narrowing of the lower-extremity stance three times weekly. The participants in the control group attended a health education program one hour weekly and heard lectures about general information to promote health. Performance was assessed by recording the changes in the displacement of the COP in the anteroposterior (A-P) and mediolateral (M-L) directions using a force platform. Participants in the Tai Chi group significantly increased the A-P and M-L displacement of the COP after Tai Chi training (p<.05). No significant differences in the A-P and the M-L displacement of the COP between pre-testing and post-testing in the control group were found. This study has shown that participation in Tai Chi exercise increased the magnitude of the A-P and M-L displacement of the COP, thereby improving the ability of healthy elderly participation to generate momentum to initiate gait. These findings support the use of Tai Chi training as an effective fall-prevention program for the elderly.

  • PDF

인솔형 국부 전단센서의 개발 및 보행 시 발바닥의 국부 전단력 측정 (A Development of an Insole Type Local Shear Measurement Transducer and Measurements of Local Plantar Shear Force During Gait)

  • 정임숙;안승찬;이진복;김한성;김영호
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.213-221
    • /
    • 2005
  • An insole type local shear force measurement system was developed and local shear stresses in the foot were measured during level walking. The shear force transducer based on the magneto-resistive principle, was a rigid 3-layer circular disc. Sensor calibrations with a specially designed calibration device showed that it provided relatively linear sensor outputs. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Sensor outputs were amplified, decorded in the bluetooth transmission part and then transferred to PC. In order to evaluate the developed system, both shear and plantar pressure measurements, synchronized with the three-dimensional motion analysis system, were performed on twelve young healthy male subjects, walking at their comfortable speeds. The maximum peak pressure during gait was 5.00kPa/B.W at the heel. The time when large local shear stresses were acted correlated well with the time of fast COP movements. The anteroposterior shear was dominant near the COP trajectory, but the mediolateral shear was noted away from the COP trajectory. The vector sum of shear stresses revealed a strong correlation with COP movement velocity. The present study will be helpful to select the material and to design of foot orthoses and orthopedic shoes for diabetic neuropathy or Hansen disease.

여름철 북태평양고기압 하에서 사쿠라지마 화산 분출(2018년 7월 16일)이 부산지역 초미세먼지 농도에 미치는 영향 (Effect of Sakurajima Volcanic Eruption (July 16, 2018) on PM2.5 Concentration in Busan under Summertime North Pacific High Pressure Condition)

  • 전병일
    • 한국환경과학회지
    • /
    • 제31권6호
    • /
    • pp.503-513
    • /
    • 2022
  • This research investigated the effect of the eruption of Japan Sakurajima volcano on the concentration of ultrafine particle when the north Pacific high pressure exists in the Busan in summer. As a result of analyzing the forward trajectory using the HYSPLIT model, the air parcel from Sakurajima volcano passed through the sea in front of Busan at 1500 LST on July 17, 24 hours after the volcanic eruption. As a result of analyzing the PM10 and PM2.5 concentrations in the Busan for two days from July 16 to 17, 2018, the Sakurajima eruption in Japan, it can be seen that there was a high increase in PM10 and PM2.5 concentrations compared to the previous day. As a result of analyzing the backward trajectory, the air mass that reached Busan at 1300 LST on July 17, 2018 has moved near the Sakurajima volcano at 1,500 m, 2,000 m, and 3,000 m. The concentration of SO42- in PM2.5, the concentration of all three stations in Busan showed a sharp increase from 1000 LST on July 17th. Looking at the NH4+ concentration in PM2.5, it shows a very similar variation trend to SO42-, and the correlation coefficient between the two components is 0.96 for Jangrimdong and Yeonsandong, and 0.85 for Busan New Port. Looking at the NO3- concentration in PM2.5, the same high concentrations as SO42 and NH4+ were not observed in the afternoon of July 17th.

압반사 제어모델을 이용한 심혈관시스템 모델링 및 시뮬레이션 (Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model)

  • 최병철;전계록
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2004년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptor sensing the variance of pressure in the cardiovascular system, and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The proposed heart activity baroreflex regulation model contains electric circuit sub-model. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the cardiovascular system by variable value in time delay sub-model. As simulation results, we observe three patterns of the cardiovascular system variability by the time delay, First, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate is observed nonperiodically and observed. Finally, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory is maintained in stable state.

  • PDF

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.

A Mobile Robot Based on Slip Compensating Algorithm for Cleaning of Stud Holes at Reactor Vessel in NPP

  • Kim, Dong Il;Moon, Young Jun
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.84-91
    • /
    • 2020
  • The APR1400 reactor stud holes can be stuck due to high temperatures, high pressure, prolonged engagement, and load changes according to pressure changes in the reactor. Threaded surfaces of a stud hole should be cleaned for the sealing of pressure in reactor vessel by removing any foreign materials which may exist in the stud holes. Human workers can access to the stud hole for the cleaning of stud holes manually, but the radiation exposure of human workers is increased. Robot is an effective way to work in hazardous area. So we introduced robot for the cleaning of stud holes. Localization of mobile robots is generally based on odometry, but with increased mileage, position errors can be accumulated. In order to eliminate cumulative error and to ensure stability of its driving, laser sensors and new control algorithm were utilized. The distance between the robot and the wall was measured by laser sensors, and the control algorithm was implemented so as to travel the desired trajectory by using the measured values from sensors. The performance of driving and hole sensing were verified through field application, and mobile robot was confirmed to be applicable to the APR 1400 NPP.

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.