• Title/Summary/Keyword: pressure time

Search Result 7,906, Processing Time 0.043 seconds

Calculation of Wind Loads on the Cladding of Apartment Building according to Panel Size (패널 크기에 따른 아파트 건축물 외장재의 풍하중 산정)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Kim, Won-Sool
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.739-744
    • /
    • 2007
  • Wind loads for cladding can be estimated using the maximum wind pressure including gust effects from wind-tunnel tests. However, when estimating the maximum wind pressure with gust effects, wind pressure coefficients for cladding would be different according to the averaging time of wind pressures, In the paper, for wind pressures obtained from wind-tunnel tests for apartment buildings, whose window panes were damaged by actual strong wind, it was investigated how pressure coefficients varied according to the size of cladding and averaging time using TVL method of Lawson. In result, it was found that the lesser the size of cladding and averaging time were, the larger pressure coefficients became. Accordingly, to estimate wind loads for cladding of apartment buildings and design it, the averaging time of wind pressures should be considered properly.

  • PDF

Nonconstrained Blood Pressure Measurement by Photoplethysmography

  • Yoon Young-Zoon;Yoon Gil-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.91-95
    • /
    • 2006
  • Blood pressure was predicted from photoplethysmography (PPG). To obtain PPG, backscattered light from a fingertip was measured and its waveform was analyzed. Systolic upstroke time and diastolic time in the pulse waveform were used as parameters to predict blood pressure. The experiment was carried out with five subjects on five different days. The systolic upstroke time had a correlation coefficient of -0.605 with respect to systolic blood pressure and the diastolic time had a correlation coefficients of -0.764 for diastolic pressure. This PPG method does not require an air-cuff installation on the arm and can predict blood pressure continuously. This simple LED/photo detector setup can be a good candidate for nonconstrained monitoring of blood pressure variations.

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

Real-Time Pressure-Measuring System for Evaluating the Depth of Pulse (맥진 깊이 판단을 위한 실시간 압력 측정기)

  • Cho, Jong Ho;Kim, Dae Bok;Kim, Gi Wang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.313-317
    • /
    • 2013
  • In order to standardize the pressure/depth against radial artery, the externally-applied-pressure measuring system was fabricated and evaluated. Based on the resistance-variable characteristic of the very thin($10{\mu}m$) film conductive tape along the pressure of a tip of a examiner's hand, this system was designed. The change of the pressure was processed through voltage regulator and Matlab S/W, then showed on computer monitor. The signal output through voltage regulator, and Matlab S/W was evaluated on various conditions. The evaluation was executed on these cases; an examiner slowly increases and decreases the pressure, rapidly increases and decreases the pressure, sequentially increases and decreases the pressure, sustains the pressure, micro-changes the pressure. As a pulse examiner varies the pressure on the radial artery of the examinee, the system's real-time output consistently varies according to the pressure. From the results, it is concluded that this system consistently shows the pressure of the tip of a examiner's hand in real time without interrupting the evaluation of the radial artery pulse. Therefore this system is expected to standardize the value of the pressure/depth externally applied by an examiner.

A Study on the Behaviour of Ultra-High Pressure Diesel Spray by Electronic Hydraulic Fuel Injection System(II) (전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구(II))

  • 장세호;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.182-190
    • /
    • 1998
  • Behaviour of ultra-high pressure diesel spray in a constant-volume pressure chamber was studied with injection pressure ranging from 20 to 160㎫. Sprays were observed by the right angle scattering method. As a result, the spray tip penetration is first proportional to a time, and after that, it is proportional to 0.52 of the time during at the time of injection pressure and back pressure increase. An empirical correlation was made for the parameters of injection pressure, air-fuel density ratio, spray tip distance, spray angle, jet angle of spray and max. spray width.

  • PDF

Development of an Embedded Foot Pressure Measurement System Using Time Division Measurement Method (시분할 측정기법을 이용한 임베디드 족압 측정 시스템 설계)

  • 김시경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this paper, an embedded foot pressure measurement system is proposed to measure foot pressure based on the embedded Linux system. To measure foot pressure data and to evaluate foot pressure distribution for the different insoles, FSR sensor, A/D converter, iPAQ PDA, and a time division measurement method are employed in the system. Utilizing this system, the foot pressure analysis has been performed for the different four shoes. The number of foot pressure/voltage conversion circuits are drastically decreased by the proposed time division measurement method from 406 to 14. The experimental results for the sandal, slipper, oxford shoes and sneakers demonstrate that the proposed system successfully performs the foot pressure measurement.

Effects of Time-Dependent High Pressure Treatment on Physico-chemical Properties of Pork

  • Hong, Geun-Pyo;Park, Sung-Hee;Kim, Jee-Yeon;Lee, Si-Kyung;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.808-812
    • /
    • 2005
  • The effects of high pressure processing, pressure level (50, 100, 150, and 200 MPa) and pressurized time (0, 5, 10, 15, 30, 45, and 60 min) on the physico-chemical properties of pork M. longissimus dorsi were evaluated. The pH value was affected by both pressure level and pressurized time, especially at 200 MPa (P<0.05). In color measurement, $L^*$ and $a^*$-values were increased by both pressure level and pressurized time, but $b^*$-value did not differ significantly (P>0.05). Water holding capacity (WHC) was significantly decreased (P<0.05) depending on pressure level and pressurized time, while cooking loss was gradually increased. Warner-Bratzler shear force did not differ significantly (P>0.05) among the treatments. These results indicate that high pressure processing below 200 MPa for 1 hr had no effect on the quality of cooked meat, although some alterations were observed before cooking.

Studies on Garment Restraint(II) - Change of Skin Temperature by Intermittent Restraint Method - (의복의 구속성에 관한 연구(II) - 단속적인 구속방법에 따른 피부온 변화에 대하여 -)

  • Shim, Boo-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.16
    • /
    • pp.173-185
    • /
    • 1991
  • We measured change of peripheral skin temperature and mean skin temperature when the upper arm and thigh pressured in order to know the effect of skin pressure applied by clothing on blood circulation. After release from pressure, we observed also recovery condition. At the same time, we examined relation between pressure and a feeling of tightness. Three physiques of healthy females, namely slender, standard and plump, served as subjects. We used intermittent method with skin pressure applied by experimental fabric at l-minute intervals. Besides we made a comparative study with results according to different restraint method (continuous method and intermittent method). As a result of this experiment, we obtained following findings. 1. The significant difference was marked at the pressure, measuring time, physique and measuring region with change of skin temperature under upper arm and thigh restraint by intermittent method. The peripheral skin temperature decreased with the lapse of restraint time. A remarkable tendency observed according to the. increase of restraint pressure. Recovery condition after release from pressure not yet recovered to original state, for all after a lapse of 10 min. The mean skin temperature decreased with the lapse of restraint time in case of upper arm restraint, it was not an obvious tendency except 60mmHg under thigh restraint. 2. Main factor affecting the evaluation of a feeling of tightness was restraint pressure, when the upper arm and thigh restraint by intermittent method. The respondence rate of 'very tight' grew larger according to the increase of restraint pressure. The value of pressure sensation declined after restraint ten times as compared with one time, but there was difference according to restraint pressure. 3. We reexamined change of skin temperature and feeling of tightness by different restraint method(continuous method and intermittent method). The results were as follows. 1) The skin temperature decreased more greatly during skin pressure by continuous method than intermittent method, especially in the peripheral. Without different restraint method, the skin temperature of slender plysique decreased more greatly than that of plump physique. 2) The value of pressure sensation by intermittent method was highly on both sites of upper arm and thigh.

  • PDF

Experimental Study on Performance Characteristics of High Speed Air Valve for Water Works (급수용 급속공기밸브의 성능특성에 관한 실험적 연구)

  • Lee, Sun Kon;Kaong, Sae Ho;Yang, Cheol Soo;Woo, Chang Ki
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2014
  • When the fluid energy convert into kinetic energy due to water hammer, the propagation velocity of pressure wave appear. The propagation velocity of pressure wave(1050 m/s) of very fast could be damage to the pipeline system. If the occurrence of water hammer is due to down-pressure, the faster the air exhaust or supply device is needed. it is high Speed Air Valve. In this paper, Each 3.12, 3.13, 3.72, $3.74kg/cm^2$ pipeline pressure were setting, and then executed pressure rapid drop for obtaining a high Speed Air Valve Operating time and pressure change data. the result was that pipe line pressure stabilization time were each 0.98, 1, 1.22, 1.25 sec. In other words, that pressure drop experimental results pipe line pressure was equal to atmospheric pressure without negative pressure After about one second. The study result would be useful to pipe line system stability design because this data could be foresee pressure stabilization time.

Fabrication and Wear Property Evaluation for FeCrSi/AC8A Composite by Low-pressure Infiltration (저압함침법에 의한 FeCrSi/AC8A 복합재료의 제조와 마모특성 평가)

  • Song, Tae-Hoon;Lee, Hyun-Jun;Choi, Yong-Bum;Kim, Sung-Jin;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.106-111
    • /
    • 2008
  • In this paper, study about property evaluation for the metal matrix composites fabricated by low pressure infiltration process. Aluminum alloy composite which is reinforced by Metal fiber preform was fabricated by low pressure casting process. Infiltration condition was changed the pressure infiltration time of 1 sec, 2 sec and 5 sec under a constant pressure of 0.4 MPa. The molten alloy completely infiltrated the FeCrSi metal perform regardless of the increase in the pressure acceleration time. The the porosity in the FeCrSi/AC8A composite was investigated. The porosity was reduced as the pressure acceleration time as shorter. The FeCrSi/AC8A composite was investigated the wear test for to know the relationship between Porosity and wear resistance. FeCrSi/AC8A composite at pressure acceleration time of 1sec is shown excellent wear resistance.