• Title/Summary/Keyword: pressure spectra

Search Result 362, Processing Time 0.024 seconds

Annealing Effect with Various Ambient Conditions of ITO Thin Film (XPS와 XRD 분석을 이용한 ITO 박막의 결정성과 비정질 특성에 관한 연구)

  • Ko, Jung Whan;Jung, Bo Young;Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.20-24
    • /
    • 2015
  • This study was explained the correlation between the O 1s spectra and the crystallization of ITO thin films. The crystal structure of ITO thin films changed with various annealing temperatures and annealing methods such as atmosphere or vaccum conditions. The amorphous structure observed from XRD pattern showed the O 1s spectra with 531.2 eV, and the crystal structure of annealed ITO films analyzed by XRD pattern had the O 1s spectra of 529.8 eV as lower binding energy then the 531.2 eV. Oxygen in view of ITO films was related to the crystallization, and the ITO films annealed in an atmosphere pressure showed higher crystal structure than the ITO annealed in a vaccum. It was indicated that the amorphous structure had higher binding energy than the crystal structure analyzed by O 1s spectra of ITO films.

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

Turbulence effects on surface pressures of rectangular cylinders

  • Li, Q.S.;Melbourne, W.H.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1999
  • This paper presents the effects of free-stream turbulence on streamwise surface pressure fluctuations on two-dimensional rectangular cylinders. Particular attention is given to possible effects of turbulence integral scale on fluctuation and peak pressures. The mean, standard deviation, peak pressure coefficients, spectra and cross-correlation of fluctuating pressures were measured to investigate the nature of the separation and reattachment phenomenon in turbulent flows over a wide range of turbulence intensity and integral scale.

Pressure distribution and aerodynamic forces on stationary box bridge sections

  • Ricciardelli, Francesco;Hangan, Horia
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.399-412
    • /
    • 2001
  • Simultaneous pressure and force measurements have been conducted on a stationary box deck section model for two configurations (namely without and with New Jersey traffic barriers) at various angles of incidence. The mean and fluctuating aerodynamic coefficients and pressure coefficients were derived, together with their spectra and with the coherence functions between the pressures and the total aerodynamic forces. The mean aerodynamic coefficients derived from force measurements are first compared with those derived from the integration of the pressures on the deck surface. Correlation between forces and local pressures are determined in order to gain insight on the wind excitation mechanism. The influence of the angle of incidence on the pressure distribution and on the fluctuating forces is also analysed. It is evidenced how particular deck section areas are more responsible for the aerodynamic excitation of the deck.

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee Seungbae;Lee Chang-Jun;Kwon O-Sup;Jeon Woo-Pyung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.779-782
    • /
    • 2002
  • We examine the problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick, open-cell foam with fabric covering and a viscoelastic painted plate of 1mm thick over an acoustic board of 4m thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber ($k_{ch}$) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

  • PDF

Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition (천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구)

  • Shin, Ku-Kyun;Hong, Chin-Suk;Jeon, Jae-Jin;Kim, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.811-816
    • /
    • 2000
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boudary layer in the low noise wind tunnel. From this experimental we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and found the possibility of relation between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

  • PDF

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅된 벽면과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee, Chang-Jun;Lee, Seung-Bae;Kwon, O-Sup;Jun, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.294-301
    • /
    • 2003
  • We examine a problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick. open-cell foam with fabric covering and a viscoelastic-painted plate of 1mm thick over an acoustic board of 4mm thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber (k$_{c}$h) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계)

  • Seong, Hyeong-Jin;Kim, Jung-Nyeon;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.

Internal pressure dynamics of a leaky and quasi-statically flexible building with a dominant opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.61-91
    • /
    • 2013
  • An analytical model of internal pressure response of a leaky and quasi-statically flexible building with a dominant opening is provided by including the effect of the envelope external pressure fluctuations on the roof, in addition to the fluctuating external pressure at the dominant opening. Wind tunnel experiments involving a flexible roof and different building porosities were carried out to validate the analytical predictions. While the effect of envelope flexibility is shown to lower the Helmholtz frequency of the building volume-opening combination, the lowering of the resonant peak in the internal and net roof pressure coefficient spectra is attributed to the increased damping in the system due to inherent background leakage and envelope flexibility. The extent of the damping effects of "skin" flexibility and background leakage in moderating the internal and net pressure response under high wind conditions is quantified using the linearized admittance functions developed. Analytical examples provided for different combinations of background leakage and envelope flexibility show that alleviation of internal and net pressure fluctuations due to these factors by as much as 40 and 15% respectively is possible compared to that for a nominally sealed rigid building of the same internal volume and opening size.

The Study on the Physicochemical Properties of Fluid under High Pressure (Ⅱ). The Effect of Pressure and Temperature on the Hexamethyl Benzene-Iodine Charge Transfer Complex in n-Hexane

  • Kwun Oh Cheun;Kim Jeong Rim
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.186-191
    • /
    • 1985
  • The effect of pressure and temperature on the stabilities of the charge transfer complexes of hexamethyl benzene with iodine in n-hexane has been investigated by UV-spectrophotometric measurements. In this experiment the absorption spectra of mixed solutions of hexamethyl benzene and iodine in n-hexane were measured at 25, 40 and $60^{\circ}C$ under 1,200, 600, 1200 and 1600 bar. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red shift at higher pressure, the blue shift at higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions. In comparison with the results in the previous studies, it can be seen that the pressure dependence of oscillator strength has a extremum behavior in durene as the variation of ${\Delta}H$ or ${\Delta}S$ with the number of methyl groups of polymethyl benzene near atmospheric pressure in the previous study. The shift or deformation of the potential in the ground state and in the excited state of the complexes formed between polymethyl benzene and iodine was considered from the correlation between the differences of the electron transfer energies and the differences of free energies of the complex formation for the pressure variation.