• Title/Summary/Keyword: pressure distribution characteristic

Search Result 199, Processing Time 0.022 seconds

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성)

  • You, Jang-Youl;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

Numerical Analysis on the Working Fluid Flow of Suction-passage for Reciprocating Compressor (왕복동식 수소압축기의 흡입통로내 작동유체 유동해석)

  • Lee, Gyeong-Hwan;Rahman, Mohammad Shiddiqur;Shim, Kyu-Jin;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1201-1207
    • /
    • 2008
  • Numerical analysis information will be very useful to improve fluid system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas coming to the cylinder of a reciprocating compressor are presented in this paper. Suction-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement, such as reducing the varying flow parameters and flow reorientation should be done. Consequently, development of the better hydrogen compressing system will be achieved.

Time-variety Characteristics Analysis of Squeal Noise due to Proposed Wear Model and Experimental Verification (제안된 마모 모델에 따른 스퀼소음의 시변특성 해석과 실험적 검증)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Wook;Boo, Kwang-Seok;Kim, Heung-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.89-90
    • /
    • 2008
  • This paper studies the effect of pad at initial stage and wear during braking on the dynamic contact pressure distribution. Wear is influenced by variable factor (contact pressure, sliding speed, radius, temperature) during dynamic braking and variation in contact pressure distribution. Many researchers have conducted complex eigenvalue analysis considering wear characteristic with Lim and Ashby wear map. The conventional analysis method is assumed the pad has smooth and flat surfaces. The purpose of this paper is to validate that wear rate induced by braking is considered for the precise squeal prediction. After obtaining pad wear from experiment, it is incorporated with FE model of brake system. Finally, the comparisons in fugitive nature of squeal will be carried out between the complex eigenvalue analysis and noise dynamometer experiment.

  • PDF

Numerical Analysis on the $2^{nd}$ Discharae-passase In Reciprocating Compressor (왕복동식 수소압축기의 2단 토출통로 유동해석)

  • Lee, G.H.;Rahman, M. Sq.;Kim, C.P.;Joung, T.W.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.27-32
    • /
    • 2009
  • Numerical analysis information of a complex discharge-passage will be very useful to improve hydrogen compression system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas from cylinder going to the chamber of a reciprocating compressor are presented in this paper. Discharge-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the hydrogen compressing system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement should be done. Consequently, development of the better hydrogen compressing system will be achieved.

  • PDF

Influence of burial conditions on the seepage characteristics of uranium bearing loose sandstone

  • Quan Jiang;Mingtao Jia;Yihan Yang;Qi Xu;Chuanfei Zhang;Xiangxue Zhang;Meifang Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1357-1371
    • /
    • 2024
  • To investigate the influence of different burial conditions on the seepage characteristics of loose sandstone in the leaching mining of sandstone uranium ore, this study applied different ground pressures and water pressures to rock samples at different burial depths to alter the rock's seepage characteristics. The permeability, pore distribution, and particle distribution characteristic parameters were determined, and the results showed that at the same burial depth, ground pressure had a greater effect on the reduction in permeability than water pressure. The patterns and mechanisms are as follows: under the influence of ground pressure, increasing the burial depth compresses the pores in the rock samples, decreases the proportion of effective permeable pores, and causes particle fragmentation, which blocks pore channels, resulting in a decrease in permeability. Under the influence of water pressure, increasing the burial depth expands the pores but also causes hard clay particles to decompose and block pore channels. As the burial depth increases, the particles eventually decompose completely, and the permeability initially decreases and then increases. In this experiment, the relationships between permeability and the proportion of pores larger than 0.15 ㎛ and the proportion of particles smaller than 59 ㎛ were found to be the most significant.

A Study on the Performance Evaluation of Dual Swirl Injectors (Dual Swirl 인젝터의 성능 평가에 관한 연구)

  • 김선진;정해승
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.113-123
    • /
    • 2003
  • Both numerical analysis and experiment of cold and hot tests were performed to obtain basic design data for the swirl coaxial type Injector and to predict the combustion performance. Mass distribution, mixing distribution, mixing efficiency, characteristic velocity efficiency were measured by the cold tests and numerical analysis using the commercial thermo-hydraulic program. Test and analysis variables were recess, pressure drop, velocity ratio, mixing spray, mixture ratio. Hot tests were performed for the Uni-element injector to compare the performance with the cold test results, and, hot tests for Multi-element injector were performed to compare the performance with Uni-element injector. Designed thrust of the Uni-element injector liquid rocket was 35kgf at sea level and combustion chamber pressure, 20bar. Kerosene and Lox were used as a propellant.

An Experimental Study on the Characteristics of Air Flow Velocity Distritutions Inside a Rolling Tire -Unloaded Rolling Tire- (회전하는 타이어 내부공기의 유동특성에 관한 실험적 연구 -무부하 회전구동 타이어-)

  • 김윤제;조정현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.174-181
    • /
    • 1999
  • in order to elucidate the characteristic of velocity distribution of the cavity air. Exploratory tests were conducted on an unloaded rolling radial tire operated at various speeds and inflation pressure. A hot-wire anemometer, rotating with the tire, was used to measure the flow velocity inside the tire cavity. Tow different types of experiments were performed ; one for the effects of rolling speed with constant inflation pressure, the other for the various cavity pressures with constant rolling speed. Experimental results are given as plots of the mean velocity distributions versus the distance from the rim. It is observed that the magnitude of mean velocity in the cavity air shows increasing natures with the increasing of the inflation pressures and rolling speeds.

  • PDF

Design Factors of Boom Sprayer(I) - Spray Patterns of Nozzles - (붐방제기 살포장치의 설계요인 구명을 위한 실험적 연구(I) -노즐의 분무유형-)

  • 정창주;김학진;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.217-225
    • /
    • 1995
  • This study was conducted to find design factors of spraying device of the boom sprayer for low volume application. Four types of nozzles(standard flat nozzle, drift guard nozzle, even flat nozzle, and hollow cone nozzle) were used for the spray characteristic experiment. Spray patterns of the nozzles were distinguished by the nozzle type, spray distance, and spray direction. The flow rate was proportional to the square root of spray pressure in all nozzles. Increased nozzle height improved spray distribution at reduced pressures and/or increased spacing. Distribution tended to improve as pressure increased within the range of pressures used for fan nozzles.

  • PDF

Characteristics of Spray Development from Vapor/Liquid Phase Distribution for GDI Spray (GDI 분무의 기.액상 분포를 통한 분무의 성장 특성)

  • 황순철;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.50-58
    • /
    • 2001
  • The purpose of this research is to obtain the information of the development process of a vaporizing GDI spray using exciplex fluorecence method. Fluorobenzene/DEMA system was used as the exciplex-forming dopants. The 2-D spray images of liquid and vapor phases were acquired, and the behavior of both phases was analyzed by the image processing. The experiment was performed at the three different ambient perssures and the ambient temperature of 273K and 473K. As the result of this work, it was found that the development characteristics of GDI spray have stronger effect on the ambient pressure than on the ambient temperature. With an increase of ambient pressure, the distribution of vapor phase was decreased and the concentration of that was denser. Two regions, namely cone and mixing regions could be identified from those resulrs.

  • PDF

A Study on the Characteristic of the Hydrostatic Bearing in the Hydraulic Cylinder (유압실린더내 정압베어링의 특성에 관한 연구)

  • Kang, Hyung-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.522-527
    • /
    • 2008
  • On designing of hydrostatic bearing, load, quantity of oil, stiffness and friction load are considered as basic characteristics. For the analysis of these basic characteristics, pressure distribution by oil film is obtained. Speed of piston, clearance, leakage of oil, eccentricity, shape and roughness of bearing affect the results which are the analysis of basic characteristics of load, quantity of oil, stiffness and friction load. The relationship among those factors are required for optimum designing of hydrostatic bearing for machining tool. Reynold's Equation is calculated through finite element method. Load, leakage of quantity and pressure distribution as variation of length, land length ratio, eccentricity and axial velocity of bearing are investigated. Then optimum design variables are obtained.