• Title/Summary/Keyword: pressure differential system

Search Result 252, Processing Time 0.024 seconds

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

A Study on the As-Built Leakage Diagnosis of Main Steam Drain Valves for Nuclear Power Plants by Multi-measuring Technique (다중계측기법을 이용한 원전 주증기배수밸브의 현상태 누설진단에 관한 연구)

  • Kim, Sung-Young;Kim, Young-Bum;Kim, Do-Hyeong;Lee, Sang-Gok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2606-2611
    • /
    • 2008
  • The high energy fluid leakage from the high temperature and high differential pressure drop system of NPPs (Nuclear Power Plants) decreases efficiency and consequently leads to considerable economic loss due to less power production. Also, the leakage possibly damages critical parts of components such as valve and trim with the effect of cavitation, flashing, and erosion, etc. and deteriorates its performance. Thus, in this study, we diagnosed the as-is leakage for four (4) main steam drain valves and two (2) steam traps of Yonggwang 1,2 units during normal operation by using multi-measuring technique and observed the occurrence of fine leakage. In the course of measuring fluid leakage, the sign of fine leakage is estimated to be the leakage from orifice. By converting the leakage to energy loss, it is equivalent to the amount of several hundred thousand won per each unit, which supports the basis for the justification of fine leakage.

  • PDF

Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor (등온반응기와 단열반응기 조합으로 구성된 0.25 MW급 메탄합성 파일롯 공정 운전특성)

  • Kim, Suhyun;Yoo, Youngdon;Kang, Sukhwan;Ryu, Jaehong;Kim, Jinho;Kim, Munhyun;Koh, Dongjun;Lee, Hyunjung;Kim, Gwangjun;Kim, Hyungtaek
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.156-164
    • /
    • 2013
  • In this study, we analyzed the operational characteristics of a 0.25 MW methanation pilot plant. Isothermal reactor controled the heat released from methanation reaction by saturated water in shell side. Methanation process consisting of isothermal reactor and adiabatic reactor had advantages with no recycle compressor and more less reactors compared with methanation process with only adiabatic reactors. In case that $H_2$/CO ratio of syngas was under 3, carbon deposition occurred on catalyst in tube side of isothermal reactor and the pressure of reactors increased. In case that $H_2$/CO ratio was maintained around 3, no carbon deposition on catalyst in tube side of isothermal reactor was found by monitoring the differential pressure of reactors and by measuring the differential pressure of several of tubes filled with catalyst before and after operating. It was shown that CO conversion and $CH_4$selectivity were over 99, 97%, respectively, and the maximum $CH_4$productivity was $695ml/h{\cdot}g-cat$.

Flow Regime Transition in Air-Molten Carbonate Salt Two-Phase Flow System (공기-탄산용융염 이상흐름계에서의 흐름영역전이)

  • Cho, Yung-Zun;Yang, Hee-Chul;Eun, Hee-Chul;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • In this of study, effects of input air velocity(0.05~0.22 m/sec) and molten carbonate salt temperature ($870{\sim}970^{\circ}C$) on flow regime transition have been studied by adopting a drift-flux model of air holdup and a stochastic analysis of differential pressure fluctuations in an air-molten sodium carbonate salt two-phase system(molten salt oxidation process). Air holdup where the flow regime transition begins was determined by air holdup-drift flux plot. The air holdup value which the flow regime transition begins was increased with increasing molten carbonate salt temperature due to the decrease of viscosity and surface tension of molten carbonate salt. To characterize the flow regime transition more quantitatively, differential pressure fluctuation signals have been analyzed by adopting the stochastic method such as phase space portraits and Kolmogorov entropy, The Kolmogorov entropy decreased with an increasing of molten carbonate salt temperature but increased gradually with an increase in an air velocity, however, it exhibited different tendency with the flow regime and the air velocity value which flow regime transition begins was same to the results of drift-flux analysis.

Study of Smoke Behavior and Differential Pressure in the Refuge Safety Area According to Damper Capacity of Smoke Control (제연댐퍼 송풍량에 따른 피난 안전 구역 차압 및 연기 거동 특성 연구)

  • Lee, Jae-Bin;Moon, Joo-Hyun;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2011
  • In this study, we calculated the smoke movement at the fire area of the refuge floor which has the refuge safety area in case of fire in the high rise building by using a computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). The buoyancy plume was applied using the temperature and flow velocity which represent 10 MW heat release rate in order to describe the fire, and the smoke movement was predicted using a species conservation equation. The pressurization system of smoke control was adopted with smoke control damper in refuge safety area, at the result, it is confirmed that the damper capacity was enough to smoke control in which the flow rate of supply was applied 25 $m^3/s$ in the case of the door at fire area opened only, and 50 $m^3/s$ in the doors at the fire area and lobby both opened case. They were satisfied in NFSC 501-A. Even though the door of fire area closed, there were smoke leakages at the gap between the door and wall. In addition, the refugee could be isolated in the fire area when the door of fire area closed during smoke control in the case of using the high damper flow rate of supply, 50 $m^3/s$. Therefore the proper damper flow rate of supply are needed in order to prevent the damage of refugee and this study proposes the suitable condition of damper capacity according to refuge scenario.

Fabrication of Bi2Te2.5Se0.5 by Combining Oxide-reduction and Compressive-forming Process and Its Thermoelectric Properties (산화물환원과 압축성형 공정에 의한 Bi2Te2.5Se0.5 화합물의 제조와 열전특성)

  • Young Soo Lim;Gil-Geun Lee
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.50-56
    • /
    • 2024
  • We report the effect of plastic deformation on the thermoelectric properties of n-type Bi2Te2.5Se0.5 compounds. N-type Bi2Te2.5Se0.5 powders are synthesized by an oxide-reduction process and consolidated via spark-plasma sintering. To explore the effect of plastic deformation on the thermoelectric properties, the sintered bodies are subjected to uniaxial pressure to induce a controlled amount of compressive strains (-0.2, -0.3, and -0.4). The shaping temperature is set using a thermochemical analyzer, and the plastic deformation effect is assessed without altering the material composition through differential scanning calorimetry. This strategy is crucial because the conventional hot-forging process can often lead to alterations in material composition due to the high volatility of chalcogen elements. With increasing compressive strain, the (00l) planes become aligned in the direction perpendicular to the pressure axis. Furthermore, an increase in the carrier concentration is observed upon compressive plastic deformation, i.e., the donor-like effect of the plastic deformation in n-type Bi2Te2.5Se0.5 compounds. Owing to the increased electrical conductivity through the preferred orientation and the donor-like effect, an improved ZT is achieved in n-type Bi2Te2.5Se0.5 through the compressive-forming process.

A Development of Web-based Safety Evaluation System of Motor-Operated-Valve in Nuclear Power Plant (웹기반 원전 동력구동밸브 안정성 평가 시스템 개발)

  • Bae, J.H.;Lee, K.N.;Kim, W.M.;Park, S.K.;Lee, D.H.;Kim, J.C.;Hong, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.903-908
    • /
    • 2001
  • A web-based client/server program, MOVIDIK(Motor-Operated-Valve Integrated Database Information of KEPCO) has been developed to perform a design basis safety evaluation for a motor-operated-valve(MOV) in the nuclear power plant. The MOVIDIK consists of seven analysis modules and one administrative module. The analysis module calculates a differential pressure on the valve disk, thrust/torque acting at a valve stem, maximum allowable stress, thermal-overload-relay selection, voltage degradation, actuator output and margin. In addition, the administrative module manages user information, approval system and code information. MOVIDIK controls a huge amount of evaluation data and piles up the safety information of safety-related MOV. The MOVIDIK will improve the efficiency of safety evaluation work and standardize the analysis process for the MOV.

  • PDF

A STUDY ON INTERNAL FLOW CHARACTERISTICS OF PCV VALVE ACCORDING TO SPOOL DYNAMIC BEHAVIOR (PCV 밸브의 스풀 동적거동에 따른 내부유동 특성에 관한 연구)

  • Lee J.H.;Lee Y.W.;Kim J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.223-227
    • /
    • 2005
  • A PCV valve is a part to control the flow rate of Blowby gas in a PCV system. A PCV system re-burns Blowby gas with fuel in a combustion chamber. Some gas enters to a crankcase room through the gap between piston ring and engine cylinder wall. This gas si called 'Blowby gas'. This gas causes many problems. In environmental view, Blowby gas includes about $25\~35\%$ hydrocarbon{HC) of total generated HC in an automobile. Hydrocarbon is a very harmful pollutant element in our life. In mechanical view, Blowby gas has some reaction with lubricant oil of crankcase room. Then, this causes lubricant oil contamination, crankcase corrosion and a decrease fo engine efficiency. Consequently, Blowby gas must be eliminated from a crankcase room. In this study, we simulated internal flow characteristics in a PCV valve according to spool dynamic behavior using local remeshing method And, we programmed our sub routine to simulate a spool dynamic motion. As results, spool dynamic behavior is periodically oscillated by the relationship between fluid force and elastic force of spring. And its magnitude is linearly increased by the differential pressure between inlet and outlet. Also, as spool is largely moved, flow area is suddenly decreased at orifice. For this reason, flow velocity is rapidly decreased by viscous effect.

  • PDF

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Comparison of the Performance of a Smoke Control System by Pressurization (가압방식에 따른 전실제연설비의 성능 비교 연구)

  • Kwon, Oh-Hyun;Nam, Jun-Seok;Nam, Sang-Ok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.24-28
    • /
    • 2017
  • This study compared the performance of a smoke control system in the case of a fire with that in the case of non-fire. Single-pressurization in the vestibule, single-pressurization in the stairwell, simultaneous smoke control of the stairwell and vestibule, which was the pressurization of smoke control, were assessed. The result showed that simultaneous smoke control of the stairwell and vestibule can maintain the differential pressure and is least influenced for the evacuation of evacuees. In addition, for the status of smoke control in Korea and the proper pressurization method, these results highlight the necessity of improving the current pressurization method through the survey.