• Title/Summary/Keyword: preorder traversal algorithm

Search Result 2, Processing Time 0.016 seconds

Numerical Method for the Analysis of Bilinear Systems via Legendre Wavelets (르장드르 웨이블릿을 이용한 쌍일차 시스템 수치 해석)

  • Kim, Beomsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.827-833
    • /
    • 2013
  • In this paper, an efficient computational method is presented for state space analysis of bilinear systems via Legendre wavelets. The differential matrix equation is converted to a generalized Sylvester matrix equation by using Legendre wavelets as a basis. First, an explicit expression for the inverse of the integral operational matrix of the Legendre wavelets is presented. Then using it, we propose a preorder traversal algorithm to solve the generalized Sylvester matrix equation, which greatly reduces the computation time. Finally the efficiency of the proposed method is discussed using numerical examples.

An Efficient Computational Method for Linear Time-invariant Systems via Legendre Wavelet (르장드르 웨이블릿을 이용한 선형 시불변 시스템의 효율적 수치 해석 방법)

  • Kim, Beomsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.577-582
    • /
    • 2013
  • In this paper Legendre wavelets are used to approximate the solutions of linear time-invariant system. The Legendre wavelet and its integral operational matrix are presented and an efficient algorithm to solve the Sylvester matrix equation is proposed. The algorithm is based on the decomposition of the Sylvester matrix equation and the preorder traversal algorithm. Using the special structure of the Legendre wavelet's integral operational matrix, the full order Sylvester matrix equation can be solved in terms of the solutions of pure algebraic matrix equations, which reduce the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity of the proposed algorithm.