• Title/Summary/Keyword: predominent

Search Result 62, Processing Time 0.023 seconds

Chemical Reactions in Surfactant Solution (I). Substituent Effects of 2-Alkylbenzimidazolide ions on Dephosphorylation in CTABr Solutions (계면활성제 용액속에서의 화학반응 (제1보). 미셀용액속에서의 탈인산화 반응에 미치는 2-알킬벤즈이미다졸음이온들의 치환기효과)

  • Young-Seuk Hong;Chan-Sik Park;Jung-Bae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.522-532
    • /
    • 1985
  • The reactions of p-nitrophenyldiphenylphosphate (p-NPDPP) with anions of benzimidazole (BI) and its 2-alkyl derivatives (R-BI) are strongly catalyzed by the micelles of cetyltrimethyl ammonium bromide (CTABr). On the other hand, the first order rate constants $(k'_{R-BI^-})$ and the second order rate constants $(k_{m(R-BI^-)})$ of the reactions mediated by R-$BI^-$in the micellar pseudophase are much smaller than those mediated by $BI^-$. In order to explain the slower rates of the micellar reactions mediated by R-$BI^-$, we compared the concentration-ratios ([R-$BI^-$]/[$BI^-$]) with the first order rate constant-ratios $(k'_{R-BI^-}/k'_{BI^-})$ and the second order constant-ratios $(k_{m(R-BI^-)}/k_{m(BI^-)})$ for the reactions taking place in the micellar pseudophase. The rate constant-ratios were much smaller than the concentration-ratios. For example in a 5 ${\times}10^{-4}$M butyl-BI solution, the two ratios were 0.089 and 0.430 (for the first order) respectively, and in a $10^{-4}$M butyl-BI solution the former was 0.100 (for the second order). This predicts that the reactivities of R-$BI^-$ in the micellar pseudophase are much smaller than that of $BI^-$. Based on the values of several kinetic parameters measured for dephosphorylation of p-NPDPP mediated by R-$BI^-$, a schemetic model is proposed. Due to the hydrophobicity and the steric effect of the alkyl substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long cetyl groups of CTABr. Consequently, the movements of R-$BI^-$ bound to the micelle should be restricted, leading to decreased collison frequencies between the nucleophiles and p-NPDPP. We refer this as an "anchor effect". This effect became more predominent when a larger alky group in R-BI was employed and when a greater concentration of R-BI was used.

  • PDF

Stability Constants of Nitrogen-Oxygen Donor Macrocyclic Ligand-Metal Ion Complexes in Aqueous Solutions (질소-산소 주개 거대고리 화합물-금속착물의 수용액에서의 안정도상수)

  • Jeong Kim;Chang-Ju Yoon;Hyu-Bum Park;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.119-127
    • /
    • 1991
  • The protonation and the metal ion complexation of 15 to 18 membered diaza crown ether such as 1,12-diaza-3, 4 : 9, 10-dibenzo-5, 8-dioxacyclopentadecane(NtnOenH$_4$), 1,13-diaza-3,4 : 10,11-dibenzo-hydroxy-5,9-dioxacyclohexadecane(NtnOtnH$_4$), 1,13-diaza-3,4 : 10,11-dibenzo-15-hydroxy-5,9-dioxacyclohexadecane(Ntn(OH)OtnH$_4$), 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacycloheptadecane (NenOdienH$_4$) and 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacyclooctadecane(NtnOdienH$_4$) were studlied by potentiometry and NMR spectroscopy. The protonation constants were used to predict basicity of crown ethers. The sequence of the basicity was NenOdienH$_4$ < Ntn(OH)OtnH$_4$ < NtnOenH$_4$ < NtnOtnH$_4$ < NtnOdienH$_4$. Changes on the basicity were explained in terms of the effects of substituents and the degree of twistness of the macrocyclic ring. The sequence of the complex stabilities were Co(II) < Ni(II) < Cu(II) < Zn(II) for the transition metal complexes and Cd(II) < pb(II) < Hg(II) for the post-transition metal complexes. These changes on the stabilities were dependent on the basicity of the ligand and cavity size of the ring. For the heavy post-transiton metal complexes and Zn(Ⅱ) complex, the former factor was predominent and for the other transition metal complexes, the latter was affected on the stabilities. $^1$H and $^{13}$C-NMR studies for heavy post-transition metal complexes indicated that the nitrogen atom has greater affinity on metal ions than oxygen atom and the planarity of the rings was losed by the complexation with metal ions.

  • PDF