• Title/Summary/Keyword: predictive toxicology

Search Result 63, Processing Time 0.016 seconds

Adverse Outcome Pathways for Prediction of Chemical Toxicity at Work: Their Applications and Prospects (작업장 화학물질 독성예측을 위한 독성발현경로의 응용과 전망)

  • Rim, Kyung-Taek;Choi, Heung-Koo;Lee, In-Seop
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.141-158
    • /
    • 2019
  • Objectives: An adverse outcome pathway is a biological pathway that disturbs homeostasis and causes toxicity. It is a conceptual framework for organizing existing biological knowledge and consists of the molecular initiating event, key event, and adverse output. The AOP concept provides intuitive risk identification that can be helpful in evaluating the carcinogenicity of chemicals and in the prevention of cancer through the assessment of chemical carcinogenicity predictions. Methods: We reviewed various papers and books related to the application of AOPs for the prevention of occupational cancer. We mainly used the internet to search for the necessary research data and information, such as via Google scholar(http://scholar.google.com), ScienceDirect(www.sciencedirect.com), Scopus(www.scopus. com), NDSL(http: //www.ndsl.kr/index.do) and PubMed(http://www.ncbi.nlm.nih.gov/pubmed). The key terms searched were "adverse outcome pathway," "toxicology," "risk assessment," "human exposure," "worker," "nanoparticle," "applications," and "occupational safety and health," among others. Results: Since it focused on the current state of AOP for the prediction of toxicity from chemical exposure at work and prospects for industrial health in the context of the AOP concept, respiratory and nanomaterial hazard assessments. AOP provides an intuitive understanding of the toxicity of chemicals as a conceptual means, and it works toward accurately predicting chemical toxicity. The AOP technique has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment. AOP can be applied to the assessment of chemical carcinogenicity along with efforts to understand the effects of chronic toxic chemicals in workplaces. Based on these predictive tools, it could be possible to bring about a breakthrough in the prevention of occupational and environmental cancer. Conclusions: The AOP tool has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment and has been widely used in the field of chemical risk assessment and the evaluation of carcinogenicity at work. It will be a useful tool for prediction, and it is possible that it can help bring about a breakthrough in the prevention of occupational and environmental cancer.

Predicting the Fetotoxicity of Drugs Using Machine Learning (기계학습 기반 약물의 태아 독성 예측 연구)

  • Myeonghyeon Jeong;Sunyong Yoo
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.490-497
    • /
    • 2023
  • Pregnant women may need to take medications to treat preexisting diseases or diseases that develop during pregnancy. However, some drugs may be fetotoxic and lead to, for example, teratogenicity and growth retardation. Predicting the fetotoxicity of drugs is thus important for the health of the mother and fetus. The fetotoxicity of many drugs has not been established because various challenges hinder the ability of researchers to determine their fetotoxicity. The need exists for in silico-based fetotoxicity assessment models, as they can modernize the testing paradigm, improve predictability, and reduce the use of animals and the costs of fetotoxicity testing. In this study, we collected data on the fetotoxicity of drugs and constructed fetotoxicity prediction models based on various machine learning algorithms. We optimized the models for more precise predictions by tuning the hyperparameters. We then performed quantitative performance evaluations. The results indicated that the constructed machine learning-based models had high performance (AUROC >0.85, AUPR >0.9) in fetotoxicity prediction. We also analyzed the feature importance of our model's predictions, which could be leveraged to identify the specific features of drugs that are strongly associated with fetotoxicity. The proposed model can be used to prescreen drugs and drug candidates at a lower cost and in less time. It provides a predictive score for fetotoxicity risk, which may be beneficial in the design of studies on fetotoxicity in human pregnancy.

Quantitative Microbial Risk Assessment Model for Staphylococcus aureus in Kimbab (김밥에서의 Staphylococcus aureus에 대한 정량적 미생물위해평가 모델 개발)

  • Bahk, Gyung-Jin;Oh, Deog-Hwan;Ha, Sang-Do;Park, Ki-Hwan;Joung, Myung-Sub;Chun, Suk-Jo;Park, Jong-Seok;Woo, Gun-Jo;Hong, Chong-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.484-491
    • /
    • 2005
  • Quantitative microbial risk assessment (QMRA) analyzes potential hazard of microorganisms on public health and offers structured approach to assess risks associated with microorganisms in foods. This paper addresses specific risk management questions associated with Staphylococcus aureus in kimbab and improvement and dissemination of QMRA methodology, QMRA model was developed by constructing four nodes from retail to table pathway. Predictive microbial growth model and survey data were combined with probabilistic modeling to simulate levels of S. aureus in kimbab at time of consumption, Due to lack of dose-response models, final level of S. aureus in kimbeb was used as proxy for potential hazard level, based on which possibility of contamination over this level and consumption level of S. aureus through kimbab were estimated as 30.7% and 3.67 log cfu/g, respectively. Regression sensitivity results showed time-temperature during storage at selling was the most significant factor. These results suggested temperature control under $10^{\circ}C$ was critical control point for kimbab production to prevent growth of S. aureus and showed QMRA was useful for evaluation of factors influencing potential risk and could be applied directly to risk management.