• 제목/요약/키워드: predictive role

검색결과 286건 처리시간 0.028초

Evaluation of the role of ischemia modified albumin in neonatal hypoxic-ischemic encephalopathy

  • Talat, Mohamed A.;Saleh, Rabab M.;Shehab, Mohammed M.;Khalifa, Naglaa A.;Sakr, Maha Mahmoud Hamed;Elmesalamy, Walaa M.
    • Clinical and Experimental Pediatrics
    • /
    • 제63권8호
    • /
    • pp.329-334
    • /
    • 2020
  • Background: Birth asphyxia is a leading cause of neonatal mortality. Ischemia-modified albumin (IMA) levels may have a predictive role in the identification and prevention of hypoxic disorders, as they increase in cases of ischemia of the liver, heart, brain, bowel, and kidney. Purpose: This study aimed to assess the value of IMA levels as a diagnostic marker for neonatal hypoxic-ischemic encephalopathy (HIE). Methods: Sixty newborns who fulfilled 3 or more of the clinical and biochemical criteria and developed HIE as defined by Levene staging were included in our study as the asphyxia group. Neonates with congenital malformation, systemic infection, intrauterine growth retardation, low-birth weight, cardiac or hemolytic disease, family history of neurological diseases, congenital or perinatal infections, preeclampsia, diabetes, and renal diseases were excluded from the study. Sixty healthy neonates matched for gestational age and with no maternal history of illness, established respiration at birth, and an Apgar score ≥7 at 1 and 5 minutes were included as the control group. IMA was determined by double-antibody enzyme-linked immunosorbent assay of a cord blood sample collected within 30 minutes after birth. Results: Cord blood IMA levels were higher in asphyxiated newborns than in controls (250.83±36.07 pmol/mL vs. 120.24±38.9 pmol/mL). Comparison of IMA levels by HIE stage revealed a highly significant difference among them (207.3±26.65, 259.28±11.68, 294.99±4.41 pmol/mL for mild, moderate, and severe, respectively). At a cutoff of 197.6 pmol/mL, the sensitivity was 84.5%, specificity was 86%, positive predictive value was 82.8%, negative predictive value was 88.3%, and area under the curve was 0.963 (P<0.001). Conclusion: IMA levels can be a reliable marker for the early diagnosis of neonatal HIE and can be a predictor of injury severity.

Random generator-controlled backpropagation neural network to predicting plasma process data

  • Kim, Sungmo;Kim, Sebum;Kim, Byungwhan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.599-602
    • /
    • 2003
  • A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.

  • PDF

Predictive maintenance architecture development for nuclear infrastructure using machine learning

  • Gohel, Hardik A.;Upadhyay, Himanshu;Lagos, Leonel;Cooper, Kevin;Sanzetenea, Andrew
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1436-1442
    • /
    • 2020
  • Nuclear infrastructure systems play an important role in national security. The functions and missions of nuclear infrastructure systems are vital to government, businesses, society and citizen's lives. It is crucial to design nuclear infrastructure for scalability, reliability and robustness. To do this, we can use machine learning, which is a state of the art technology used in various fields ranging from voice recognition, Internet of Things (IoT) device management and autonomous vehicles. In this paper, we propose to design and develop a machine learning algorithm to perform predictive maintenance of nuclear infrastructure. Support vector machine and logistic regression algorithms will be used to perform the prediction. These machine learning techniques have been used to explore and compare rare events that could occur in nuclear infrastructure. As per our literature review, support vector machines provide better performance metrics. In this paper, we have performed parameter optimization for both algorithms mentioned. Existing research has been done in conditions with a great volume of data, but this paper presents a novel approach to correlate nuclear infrastructure data samples where the density of probability is very low. This paper also identifies the respective motivations and distinguishes between benefits and drawbacks of the selected machine learning algorithms.

Comparative Molecular Field Analysis of Caspase-3 Inhibitors

  • Sathya, B.;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제7권3호
    • /
    • pp.166-172
    • /
    • 2014
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular field analysis (CoMFA) was performed on a series of 3, 4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMFA model ($q^2=0.676$, $r^2=0.990$). The predictive ability of test set ($r^2_{pred}$) was 0.688. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

복소형 다각형 불변영역을 이용한 입력제한 예측제어 (Input Constrained Receding Horizon Control Using Complex Polyhedral Invariant Region)

  • 이영일;방대인;윤태웅;김기용
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.991-997
    • /
    • 2002
  • The concept of feasible & invariant region plays an important role to derive closed loop stability and achie adequate performance of constrained receding horizon predictive control. In this paper, we define a complex polyhedral feasible & invariant set for all stabilizable input-constrained linear systems by using a complex transform and propose a one-norm based receding horizon control scheme using these invariant sets. In order to get a larger stabilizable set, a convex hull of invariant sets which are defined for different state feedback gains is used as a target invariant set of the constrained receding horizon control. The proposed constrained receding horizon control scheme is formulated so that it can be solved via linear programming.

Prediction of plasma etching using genetic-algorithm controlled backpropagation neural network

  • Kim, Sung-Mo;Kim, Byung-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1305-1308
    • /
    • 2003
  • A new technique is presented to construct a predictive model of plasma etch process. This was accomplished by combining a backpropagation neural network (BPNN) and a genetic algorithm (GA). The predictive model constructed in this way is referred to as a GA-BPNN. The GA played a role of controlling training factors simultaneously. The training factors to be optimized are the hidden neuron, training tolerance, initial weight magnitude, and two gradients of bipolar sigmoid and linear functions. Each etch response was optimized separately. The proposed scheme was evaluated with a set of experimental plasma etch data. The etch process was characterized by a $2^3$ full factorial experiment. The etch responses modeled are aluminum (A1) etch rate, silica profile angle, A1 selectivity, and dc bias. Additional test data were prepared to evaluate model appropriateness. The GA-BPNN was compared to a conventional BPNN. Compared to the BPNN, the GA-BPNN demonstrated an improvement of more than 20% for all etch responses. The improvement was significant in the case of A1 etch rate.

  • PDF

다중현상 유동 해석 및 설계를 위한 융복합 프레임웍 개발 (DEVELOPMENT OF A HYBRID CFD FRAMEDWORK FOR MULTI-PHENOMENA FLOW ANALYSIS AND DESIGN)

  • 허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.517-523
    • /
    • 2010
  • Recently, the rapid evolution of computational fluid dynamics (CFD) has enabled its key role in industries and predictive sciences. From diverse research disciplines, however, are there strong needs for integrated analytical tools for multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-physics and multi-scale phenomena, the multi-phenomena CFD technology enables us to perform the flow simulation for integrated and complex systems. From the multi-phenomena CFD analysis, the high-precision analytical and predictive capacity can enhance the fast development of industrial technologies. It is also expected to further enhance the applicability of the simulation technique to medical and bio technology, new and renewable energy, nanotechnology, and scientific computing, among others.

  • PDF

Bayesian Modeling of Mortality Rates for Colon Cancer

  • Kim Hyun-Joong
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.177-190
    • /
    • 2006
  • The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.

Comparative Molecular Similarity Indices Analysis of Caspase-3 Inhibitors

  • Babu, Sathya;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.227-233
    • /
    • 2014
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular similarity indices analysis (CoMSIA) was performed on a series of 3,4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMSIA model ($q^2$ = 0.586, $r^2$ = 0.955). The predictive ability of test set ($r^2_{pred}$) was 0.723. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안 (The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump)

  • 김희찬
    • 한국압력기기공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.