동영상 부호화에서 움직임 추정은 참조 프레임으로부터 현재 프레임의 화소를 추정하는 처리로서 예측 화질과 부호화 시간에 직접적인 영향을 미친다. 본 논문은 고속 움직임 추정을 위해 시공간 움직임 활동도를 이용한 적응형 계층 육각 탐색에 관한 것이다. 제안된 방법은 현재의 매크로블록에 시공간적으로 인접한 매크로블록들의 움직임 벡터를 이용하여 시공간 움직임 활동도를 정의한다. 이렇게 정의한 시공간 움직임 활동도가 낮을 경우 기존의 적응형 육각 탐색을 수행하고, 그렇지 않을 경우, 웨이블렛 변환의 다단계 저주파 부영상들로 구성된 다단계 계층 공간상에서 계층 육각 탐색을 수행한다. 본 논문에서는 서로 다른 움직임 특성을 갖는 복수의 동영상 시퀀스들에 대한 컴퓨터 시뮬레이션 결과를 토대로 예측 화질과 연산 시간 측면에서 제안된 방법의 성능을 분석.평가하였다. 실험 결과는 제안된 방법이 작은 움직임 탐색과 큰 움직임 탐색에 모두 적합함을 보여주고 있다. 제안된 방법은 고속 움직임 탐색이 가능한 적응형 육각 탐색의 장점을 유지하면서도 시공간 움직임 활동도가 높은 비디오 시퀀스에서 야기되는 국부 최소 문제를 적응적으로 경감할 수 있었다.
Park, Sehhoon;Lee, Chung;Ku, Bo Mi;Kim, Minjae;Park, Woong-Yang;Kim, Nayoung K.D.;Ahn, Myung-Ju
BMB Reports
/
제54권7호
/
pp.386-391
/
2021
Owing to rapid advancements in NGS (next generation sequencing), genomic alteration is now considered an essential predictive biomarkers that impact the treatment decision in many cases of cancer. Among the various predictive biomarkers, tumor mutation burden (TMB) was identified by NGS and was considered to be useful in predicting a clinical response in cancer cases treated by immunotherapy. In this study, we directly compared the lab-developed-test (LDT) results by target sequencing panel, K-MASTER panel v3.0 and whole-exome sequencing (WES) to evaluate the concordance of TMB. As an initial step, the reference materials (n = 3) with known TMB status were used as an exploratory test. To validate and evaluate TMB, we used one hundred samples that were acquired from surgically resected tissues of non-small cell lung cancer (NSCLC) patients. The TMB of each sample was tested by using both LDT and WES methods, which extracted the DNA from samples at the same time. In addition, we evaluated the impact of capture region, which might lead to different values of TMB; the evaluation of capture region was based on the size of NGS and target sequencing panels. In this pilot study, TMB was evaluated by LDT and WES by using duplicated reference samples; the results of TMB showed high concordance rate (R2 = 0.887). This was also reflected in clinical samples (n = 100), which showed R2 of 0.71. The difference between the coding sequence ratio (3.49%) and the ratio of mutations (4.8%) indicated that the LDT panel identified a relatively higher number of mutations. It was feasible to calculate TMB with LDT panel, which can be useful in clinical practice. Furthermore, a customized approach must be developed for calculating TMB, which differs according to cancer types and specific clinical settings.
본 논문에서는 디지털 이동 무선통신을 위한 음성신호와 부호화 기법으로 SBC(sub-bnad coding)를 제안하고, SBC의 레일리(Rayleigh) 페이딩 채널에서의 음질의 강인성을 컴퓨터 시뮬레이션을 통해 조사하였다. 먼저 레일리 페이딩 채널, 시뮬레이터 및 16-ary DPSK(differential phase shift key) 수신기 모델을 제시한 후, 모델의 타당성을 이론치와 비교하여 입증하였다. 채널에러에 대한 영향은 SNR, LPC(linear predictive codin) 거리척도 및 주관적인 청각조사를 통해 검토하였다. BER(bit error rate) =$10_{-3}$, $10_{-2}$, 5$ imes$$10_{-2}$에 대한 시뮬레이션결과 BER=$10_{-2}$에서도 음성의 이해도는 확인되었으며, BER=5$ imes$$10_{-2}$에서도 음성통신에 사용하기는 충분하였다. 따라서 SBC는 ECC(error correction code) 사용없이 BER=$10_{-4}$~$10_{-2}$정도의 레일리 페이딩 채널에서 디지탈 이동무선통신에 응용이 가능함을 알 수 있었다.
This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.
The study on speech recognition and understanding has been done for many years. In this paper, we propose a new type of recurrent neural network architecture for speech recognition, in which each output unit is connected to itself and is also fully connected to other output units and all hidden units [1]. Besides that, we also proposed the new architecture and the learning algorithm of recurrent neural network such as Backpropagation Through Time (BPTT, which well-suited. The aim of the study was to observe the difference of Arabic's alphabet like "alif" until "ya". The purpose of this research is to upgrade the people's knowledge and understanding on Arabic's alphabet or word by using Recurrent Neural Network (RNN) and Backpropagation Through Time (BPTT) learning algorithm. 4 speakers (a mixture of male and female) are trained in quiet environment. Neural network is well-known as a technique that has the ability to classified nonlinear problem. Today, lots of researches have been done in applying Neural Network towards the solution of speech recognition [2] such as Arabic. The Arabic language offers a number of challenges for speech recognition [3]. Even through positive results have been obtained from the continuous study, research on minimizing the error rate is still gaining lots attention. This research utilizes Recurrent Neural Network, one of Neural Network technique to observe the difference of alphabet "alif" until "ya".
The aim of this study was to analyze the characteristics of knee joint sound in frequency domain and classify the knee joint diseases. The spectral analysis of knee joint sounds was performed using LPC(Linear Predictive Coding) and Wigner-Ville distribution. Ten normal subjects and 5 patients with meniscal tearing were enrolled. Each subject was seated on a chair and underwent active knee flexion and extension for 60 seconds. Sampling frequency was 10kHz and electronic stethoscope and electro-goniometer were applied during the knee motion for data collection. The spectral analysis showed 3 peaks in both groups and the difference energy distribution in time-frequency domain. These results suggest that the diagnosis of knee joint pathology using the auscultation could be easier and more correct.
본 논문에서는 한국어에만 나타나는 경음에 대하여 음운학적, 음향학적 특성을 고찰하고 이를 기반으로 음성인식 실험을 수행한 후 그 결과를 분석하였다. 음성인식 실험을 위하여 입력 음성을 48개의 유사음소단위 (PLU; Phoneme Likely Unit)로 레이블링을 한 후 각각의 음소군에 대하여 LPC (Liner Predictive Coding) 분해능을 증가시키면서 음소인식 및 단어인식 실험을 수행하였다. 그 결과, 음소 인식 실험에서 경음군의 인식률이 가장 낮게 나타나 경음에 대한 분석이 보다 많이 필요함을 알 수 있었다. 또한 PLC의 분해 차원이 23차 일 때 경음과 전체 음소 인식률이 각각 $34.11\%,\;46.1\%$로 나타나 가장 양호함을 알 수 있었으며 단어인식 실험에서도 LPC 23차와 25차 일 때 $81.68\%,\;81.87\%$로 인식률이 가장 좋음을 알 수 있었다. 이상의 실험 결과에서 한국어의 경음은 전체 시스템의 인식 성능과 밀접한 관계가 있음을 알 수 있었다.
As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.
The purpose of this study was to analyze and compare head register with chest register of singers acoustically. Fifteen healthy tenor major students were participated. Fifteen healthy untrained adults were chosen as the control group for this study. Long term average (LTA) power spectrum using the Fast Fourier transform (FFT) algorithm and Linear predictive coding (LPC) filter response were made with /a/ sustained in both head (G4, 392 Hz) and chest registers (C3, 131 Hz). Statistical analysis was performed using the Mann-Whitney test. In the LTA power spectrum, head register of singers increased in the level of energy gain within the frequency of 2.2-3.4 kHz (p<0.01), and 7.5-8.4 kHz (p<0.01, p<0.05). Chest register of singers increased in the frequency of 2.2-3.1 kHz (p<0.01), 7.8-8.4 kHz (p<0.05) and around 9.6 kHz (p<0.01). The LTA power spectrum revealed a peak of acoustic energy around 2,500 Hz, known as the singer's formant and another peak of acoustic energy around 8,000 Hz in the singer's voice.
As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.