• Title/Summary/Keyword: prediction performance

Search Result 5,586, Processing Time 0.031 seconds

Big Data Management in Structured Storage Based on Fintech Models for IoMT using Machine Learning Techniques (기계학습법을 이용한 IoMT 핀테크 모델을 기반으로 한 구조화 스토리지에서의 빅데이터 관리 연구)

  • Kim, Kyung-Sil
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.7-15
    • /
    • 2022
  • To adopt the development in the medical scenario IoT developed towards the advancement with the processing of a large amount of medical data defined as an Internet of Medical Things (IoMT). The vast range of collected medical data is stored in the cloud in the structured manner to process the collected healthcare data. However, it is difficult to handle the huge volume of the healthcare data so it is necessary to develop an appropriate scheme for the healthcare structured data. In this paper, a machine learning mode for processing the structured heath care data collected from the IoMT is suggested. To process the vast range of healthcare data, this paper proposed an MTGPLSTM model for the processing of the medical data. The proposed model integrates the linear regression model for the processing of healthcare information. With the developed model outlier model is implemented based on the FinTech model for the evaluation and prediction of the COVID-19 healthcare dataset collected from the IoMT. The proposed MTGPLSTM model comprises of the regression model to predict and evaluate the planning scheme for the prevention of the infection spreading. The developed model performance is evaluated based on the consideration of the different classifiers such as LR, SVR, RFR, LSTM and the proposed MTGPLSTM model and the different size of data as 1GB, 2GB and 3GB is mainly concerned. The comparative analysis expressed that the proposed MTGPLSTM model achieves ~4% reduced MAPE and RMSE value for the worldwide data; in case of china minimal MAPE value of 0.97 is achieved which is ~ 6% minimal than the existing classifier leads.

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

A Study on the Smart Elderly Support System in response to the New Virus Disease (신종 바이러스에 대응하는 스마트 고령자지원 시스템의 연구)

  • Myeon-Gyun Cho
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.175-185
    • /
    • 2023
  • Recently, novel viral infections such as COVID-19 have spread and pose a serious public health problem. In particular, these diseases have a fatal effect on the elderly, threatening life and causing serious social and economic losses. Accordingly, applications such as telemedicine, healthcare, and disease prevention using the Internet of Things (IoT) and artificial intelligence (AI) have been introduced in many industries to improve disease detection, monitoring, and quarantine performance. However, since existing technologies are not applied quickly and comprehensively to the sudden emergence of infectious diseases, they have not been able to prevent large-scale infection and the nationwide spread of infectious diseases in society. Therefore, in this paper, we try to predict the spread of infection by collecting various infection information with regional limitations through a virus disease information collector and performing AI analysis and severity matching through an AI broker. Finally, through the Korea Centers for Disease Control and Prevention, danger alerts are issued to the elderly, messages are sent to block the spread, and information on evacuation from infected areas is quickly provided. A realistic elderly support system compares the location information of the elderly with the information of the infected area and provides an intuitive danger area (infected area) avoidance function with an augmented reality-based smartphone application. When the elderly visit an infected area is confirmed, quarantine management services are provided automatically. In the future, the proposed system can be used as a method of preventing a crushing accident due to sudden crowd concentration in advance by identifying the location-based user density.

Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks (합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측)

  • Hyunsoo Hong;Wonki Kim;Do Yoon Jeon;Kwanho Lee;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.

Similar Contents Recommendation Model Based On Contents Meta Data Using Language Model (언어모델을 활용한 콘텐츠 메타 데이터 기반 유사 콘텐츠 추천 모델)

  • Donghwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.27-40
    • /
    • 2023
  • With the increase in the spread of smart devices and the impact of COVID-19, the consumption of media contents through smart devices has significantly increased. Along with this trend, the amount of media contents viewed through OTT platforms is increasing, that makes contents recommendations on these platforms more important. Previous contents-based recommendation researches have mostly utilized metadata that describes the characteristics of the contents, with a shortage of researches that utilize the contents' own descriptive metadata. In this paper, various text data including titles and synopses that describe the contents were used to recommend similar contents. KLUE-RoBERTa-large, a Korean language model with excellent performance, was used to train the model on the text data. A dataset of over 20,000 contents metadata including titles, synopses, composite genres, directors, actors, and hash tags information was used as training data. To enter the various text features into the language model, the features were concatenated using special tokens that indicate each feature. The test set was designed to promote the relative and objective nature of the model's similarity classification ability by using the three contents comparison method and applying multiple inspections to label the test set. Genres classification and hash tag classification prediction tasks were used to fine-tune the embeddings for the contents meta text data. As a result, the hash tag classification model showed an accuracy of over 90% based on the similarity test set, which was more than 9% better than the baseline language model. Through hash tag classification training, it was found that the language model's ability to classify similar contents was improved, which demonstrated the value of using a language model for the contents-based filtering.

Convolutional Neural Network-based Prediction of Bolt Clamping Force in Initial Bolt Loosening State Using Frequency Response Similarity (초기 볼트풀림 상태의 볼트 체결력 예측을 위한 주파수응답 유사성 기반의 합성곱 신경망)

  • Jea Hyun Lee;Jeong Sam Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • This paper presents a novel convolutional neural network (CNN)-based approach for predicting bolt clamping force in the early bolt loosening state of bolted structures. The approach entails tightening eight bolts with different clamping forces and generating frequency responses, which are then used to create a similarity map. This map quantifies the magnitude and shape similarity between the frequency responses and the initial model in a fully fastened state. Krylov subspace-based model order reduction is employed to efficiently handle the large amount of frequency response data. The CNN model incorporates a regression output layer to predict the clamping forces of the bolts. Its performance is evaluated by training the network by using various amounts of training data and convolutional layers. The input data for the model are derived from the magnitude and shape similarity map obtained from the frequency responses. The results demonstrate the diagnostic potential and effectiveness of the proposed approach in detecting early bolt loosening. Accurate bolt clamping force predictions in the early loosening state can thus be achieved by utilizing the frequency response data and CNN model. The findings afford valuable insights into the application of CNNs for assessing the integrity of bolted structures.

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

Leg Fracture Recovery Monitoring Simulation using Dual T-type Defective Microstrip Patch Antenna (쌍 T-형 결함 마이크로스트립 패치 안테나를 활용한 다리 골절 회복 모니터링 모의실험)

  • Byung-Mun Kim;Lee-Ho Yun;Sang-Min Lee;Yeon-Taek Park;Jae-Pyo Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.587-594
    • /
    • 2023
  • In this paper, we present the design and optimization process of an on-body microstrip patch antenna with a paired T-type defect for monitoring fracture recovery of human legs. This antenna is designed to be light, thin and compact despite the improvement of return loss and bandwidth performance by adjusting the size of the T-type defect. The structure around the applied human leg is structured as a 5-layer dielectric plane, and the complex dielectric constant of each layer is calculated using the 4-pole Cole-Cole model parameters. In a normal case without bone fracture, the return loss of the on-body antenna is -66.71dB at 4.0196GHz, and the return loss difference ΔS11 is 37.95dB when the gallus layer have a length of 10.0mm, width of 1.0mme, and height of 2.0mm. A 3'rd degree polynomial is presented to predict the height of the gallus layer for the change in return loss, and the polynomial has a very high prediction suitability as RSS = 1.4751, R2 = 0.9988246, P-value = 0.0001841.

Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks (순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구)

  • Janghoon Seo;Dong-Woo Park;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 2023
  • In the present study, a deep learning model was established to predict the motion response of small fishing vessels. Hydrodynamic performances were evaluated for two small fishing vessels for the dataset of deep learning model. The deep learning model of the Long Short-Term Memory (LSTM) which is one of the recurrent neural network was utilized. The input data of LSTM model consisted of time series of six(6) degrees of freedom motions and wave height and the output label was selected as the time series data of six(6) degrees of freedom motions. The hyperparameter and input window length studies were performed to optimize LSTM model. The time series motion response according to different wave direction was predicted by establised LSTM. The predicted time series motion response showed good overall agreement with the analysis results. As the length of the time series increased, differences between the predicted values and analysis results were increased, which is due to the reduced influence of long-term data in the training process. The overall error of the predicted data indicated that more than 85% of the data showed an error within 10%. The established LSTM model is expected to be utilized in monitoring and alarm systems for small fishing vessels.

Automatic detection and severity prediction of chronic kidney disease using machine learning classifiers (머신러닝 분류기를 사용한 만성콩팥병 자동 진단 및 중증도 예측 연구)

  • Jihyun Mun;Sunhee Kim;Myeong Ju Kim;Jiwon Ryu;Sejoong Kim;Minhwa Chung
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.45-56
    • /
    • 2022
  • This paper proposes an optimal methodology for automatically diagnosing and predicting the severity of the chronic kidney disease (CKD) using patients' utterances. In patients with CKD, the voice changes due to the weakening of respiratory and laryngeal muscles and vocal fold edema. Previous studies have phonetically analyzed the voices of patients with CKD, but no studies have been conducted to classify the voices of patients. In this paper, the utterances of patients with CKD were classified using the variety of utterance types (sustained vowel, sentence, general sentence), the feature sets [handcrafted features, extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), CNN extracted features], and the classifiers (SVM, XGBoost). Total of 1,523 utterances which are 3 hours, 26 minutes, and 25 seconds long, are used. F1-score of 0.93 for automatically diagnosing a disease, 0.89 for a 3-classes problem, and 0.84 for a 5-classes problem were achieved. The highest performance was obtained when the combination of general sentence utterances, handcrafted feature set, and XGBoost was used. The result suggests that a general sentence utterance that can reflect all speakers' speech characteristics and an appropriate feature set extracted from there are adequate for the automatic classification of CKD patients' utterances.