• Title/Summary/Keyword: prediction of lifetime

Search Result 220, Processing Time 0.028 seconds

Prediction of Characteristics Life of the Rubber Gasket (가스켓용 고무소재의 특성수명 예측)

  • Park, Joon-Hyung;Lee, Se-Hee;Jang, Hyun-Duck;Kim, Gwang-Sub;Yang, Jeong-Sam
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.213-235
    • /
    • 2010
  • In this paper, we carried out an accelerated degradation test that is commonly used to predict characteristics life of rubber gaskets for a pole transformer. The potential failure mode applied for the test is rubber elongation and the corresponding failure mechanism is heat. From the result, we found that Weibull distribution is the fatigue life distribution in NBR and H-NBR. After estimating characteristics life in commonly used temperature, the average life span of $B_{50}$ in NBR is 7.7 years under $50^{\circ}C$ and the life span in H-NBR is 28 years.

A Study on Reliability Design of Fracture Mechanics Method Using FEM (유한요소법을 이용한 파괴 역학적 방법의 신뢰성설계기술에 관한 연구)

  • Baik, Seung-Yeb;Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4398-4404
    • /
    • 2015
  • Stainless steel sheets are widely used as the structural material for dynamic machine structures, These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding, For fatigue design of gas welded joints such as various type joint. It is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. Thus in this paper, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, ${\Delta}P-N_f$ curves were rearranged in the ${\Delta}{\sigma}-N_f$ relation with the hot spot stresses at the gas welded joints. Using these results, the accelerated life test(ALT) is conducted. From the experiment results, an life prediction model is derived and factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.

Genetic Parameters and Responses in Growth and Body Composition Traits of Pigs Measured under Group Housing and Ad libitum Feeding from Lines Selected for Growth Rate on a Fixed Ration

  • Nguyen, Nguyen Hong;McPhee, C.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1075-1079
    • /
    • 2005
  • The main objective of this study is to examine genetic changes in growth rate and carcass composition traits in group housed, ad libitum fed pigs, from lines of Large White divergently selected over four years for high and low post-weaning daily gain on a fixed but restricted ration. Genetic parameters for production and carcass traits were also estimated by using average information-restricted maximum likelihood applied to a multivariate individual animal model. All analyses were carried out on 1,728 records of group housed ad libitum fed pigs, and include a full pedigree of 5,324 animals. Estimates of heritability (standard errors in parentheses) were 0.11 (0.04) for lifetime daily liveweight gain (LDG), 0.13 (0.04) for daily carcass weight gain (CDG) and 0.28 (0.06) for carcass backfat (CFT). Genetic correlations between LDG and CDG were highly positive and between LDG and CFT negative, suggesting that selection for lifetime daily gain under commercial conditions of group housing with ad libitum feeding would result in favourable improvement in carcass traits. CFT showed negative genetic correlations with CDG. Correlated genetic responses evaluated as estimated breeding values (EBVs) were obtained from a multivariate animal model-best linear unbiased prediction analysis. After four years of divergent selection for 6 week post-weaning growth rate on restricted feeding, pigs performance tested on ad libitum feeding in groups exhibited changes in EBVs of 6.77 and -9.93 (g/d) for LDG, 4.25 and -7.08 (g/d) for CDG, and -1.42 and 1.55 (mm) for CFT, in the high and low lines, respectively. It is concluded that selection for growth rate on restricted feeding would significantly improve genetic performance and carcass composition of their descendants when group housed and ad libitum fed as is a common commercial practice.

Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University (선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

A Study on the Life Time Prediction and Acid-Heat aging Property of NBR Rubber for Fuel Cell Gasket (연료전지 카스켓용 NBR 고무의 산-열 노화 특성과 수명예측에 관한 연구)

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Seok-Jin;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.20-31
    • /
    • 2007
  • Material characteristics and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the NBR compound was prepared by sulfur-cure system, and was used in predicting the lifetime of rubber gasket made by the compound. The accelerated material aging was investigated at different temperatures at 120, 140 and $160^{\circ}C$ and aging time from 3 hours to 600 hours at 5, 6, 7 vol %. of $H_2SO_4$ concentrations The rubber strips were placed in acid solution using pyrex g1ass tube. Both ends of pyrex g1ass tube were sealed to avoid evaporation of solution during heating at given time. The material test and accelerated acid-heat aging test were carried out to predict the useful life of NBR rubber gasket for a fuel cell stack. In order to investigate the effects of acid-heat aging on the properties of the NBR, tensile strength, elongation at break, hardness and crosslink-density were measured. The tensile strength decreases as the $H_2SO_4$ concentrations and temperature increase. Results were evaluated using Arrhenius equation.

A Study for Lifespan Prediction of Expansion by Temperature Status (온도상태에 따른 신축관 이음의 수명예측에 관한 연구)

  • Oh, Jung-Soo;Lee, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.424-429
    • /
    • 2018
  • In this study, an expansion joint that is susceptible to waterhammer was tested for its vibration durability. The operation data for the hydraulic actuator was the expansion length of the expansion joint when the waterhammer occurred. In the case of the vibration durability test, the internal temperature status of the expansion joint was assumed to be a stress factor and a lifespan prediction model was assumed to follow the Arrhenius model. A test was carried out by increasing the internal temperature status at $30^{\circ}C$, $50^{\circ}C$, and $65^{\circ}C$. By a linear transformation of the lifespan data for each temperature, a constant value and activation energy coefficient was induced for the Arrhenius equation and verified by comparing the value of a lifetime prediction model with the experimental value at $85^{\circ}C$. The failure modes of the ongoing or finished test were leakage, bellows separation, and internal deformation. In the future, a composite lifespan prediction model, including two more stress factors, will be developed.

The Impact of Milk Production Level on Profit Traits of Holstein Dairy Cattle in Korea (국내 Holstein종 젖소의 생산수준이 젖소의 수익형질에 미치는 효과)

  • Do, Changhee;Park, Suhun;Cho, Kwang-Hyun;Choi, Yunho;Choi, Taejeong;Park, Byungho;Yun, Hobaek;Lee, Donghee
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.343-349
    • /
    • 2013
  • Data including 1,372,050 milk records pertaining to 438,019 cows from 1983 to 2011 collected during performance tests conducted by the National Livestock Cooperative Dairy Improvement Center were used to calculate milk income and profit of individuals and investigate the effects of production levels of early lactation (parity 1 and 2, respectively). Individuals with a moderate level of early lactation stayed longer in herds. Among parity 1, the 9,000 kg or higher group had a lower mean number of lactations than the overall mean of 3.13. The 7,000 kg or lower and 10,000 kg or higher groups had lower mean life time milking days than the overall mean of 1,076.8 days. Standard deviations of lifetime traits tended to decrease as production levels increased. For parity 2, the 11,000 kg or higher group had a lower mean number of lactation than the overall mean of 3.43. The lifetime milking days was highest in the 12,000 kg group (1,212.0 days), and generally smaller in the lower groups. Profit increased as the production level of groups increased for both parity 1 and 2. In groups with low production levels, profit of parity 1 was higher than that of parity 2, while the reverse was true in groups with high production levels. These results suggest that individuals in the low production groups had a greater likelihood to be culled due to reproductive or other problems. Furthermore, the accuracy of the prediction of lifetime profit of individuals with a milk yield of 305 days seems to be higher for parity 2 than parity 1; therefore, it is desirable to predict lifetime profit using the 305d milk yield of parity 2. In conclusion, breeding goals are based on many factors in functions for the estimation of profit; however, production levels during early lactation (parity 1 and 2) can be used as indicators of profit to extend profitability.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Characterization and Fatigue Life Evaluation of Rubber/Clay Nanocomposites (고무-점토 나노복합체 물성 및 피로내구성 평가)

  • Woo, Chang-Su;Park, Hyun-Sung;Joe, Deug-Hwan;Jun, Young-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1199-1203
    • /
    • 2011
  • Nanocomposites were prepared through the compounding of rubber and clay. Measurements of the static and dynamic mechanical properties of different compositions over a temperature range $70-100^{\circ}C$ showed that the mechanical properties of these rubber/clay nanocomposites are superior to those of existing rubber materials. In this study, by using the parameter of the maximum Green.Lagrange strain appearing at certain locations, the relationship between fatigue life and maximum Green.Lagrange strain, and the correlations between test-piece tests and bench tests of actual rubber components are proved. In order to predict the fatigue life of rubber components at the design stage, a simple procedure of life prediction is suggested. The predicted fatigue lives of the rubber engine mounts agree fairly well with the fatigue lives determined experimentally.