• Title/Summary/Keyword: prediction of ischemic episodes

Search Result 1, Processing Time 0.014 seconds

Prediction of Transient Ischemia Using ECG Signals (심전도 신호를 이용한 일시적 허혈 예측)

  • Han-Go Choi;Roger G. Mark
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.190-197
    • /
    • 2004
  • This paper presents automated prediction of transient ischemic episodes using neural networks(NN) based pattern matching method. The learning algorithm used to train the multilayer networks is a modified backpropagation algorithm. The algorithm updates parameters of nonlinear function in a neuron as well as connecting weights between neurons to improve learning speed. The performance of the method was evaluated using ECG signals of the MIT/BIH long-term database. Experimental results for 15 records(237 ischemic episodes) show that the average sensitivity and specificity of ischemic episode prediction are 85.71% and 71.11%, respectively. It is also found that the proposed method predicts an average of 45.53[sec] ahead real ischemia. These results indicate that the NN approach as the pattern matching classifier can be a useful tool for the prediction of transient ischemic episodes.

  • PDF