• Title/Summary/Keyword: prediction of higher activity compounds

Search Result 4, Processing Time 0.017 seconds

Molecular Holographic QSAR Model on the Herbicidal Activities of New Novel 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide Derivatives and Prediction of Higher Activity Compounds (새로운 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenyl-propionamide 유도체들의 제초활성에 관한 HQSAR 모델과 높은 활성 화합물의 예측)

  • Sung, Nack-Do;Kim, Dae-Whang;Jung, Hoon-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.279-286
    • /
    • 2005
  • The herbicidal activities against pre-emergence barnyard grass (Echinochloa crus-galli) by a series of new 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpopionamide derivatives as substrate molecule were studied using molecular holographic (H) quantitative structure activity relationships (HQSAR) methodology. From the based on the findings, the higher herbicidal active compounds are predicted by the derived HQSAR model. The best HQSAR model (VI-1) was derived from fragment distinction combination of atoms/bonds in fragment size, $7{\sim}10$bin. The herbicidal activities from atomic contribution maps showed that the activity will be able to increased according to the R-substituents variation of the N-phenyl ring and change of 6-chloro-2-benzoxazolyloxy group. Based on the results, the statistical results of the best HQSAR model (VI-1) exhibited the best pedictability and fitness for the herbicidal activities based on the cross-validated value ($q^2=0.646$) and non cross-validated value ($r^2_{ncv.}=0.917$), respectively. From the graphical analyses of atomic contribution maps, it was revealed that the lowest herbicidal activitics depends upon the 4-(6-chloro-2-benzoxazolyloxy)phenoxy group ($pred.pI_{50}=-3.20$). Particularly, the R=4-fluoro, X=isobutoxy substituent (P2) of (X)-phenoxy-N-(R)-phenylpropionamide derivative is predicted as the highest active compound ($pred.pI_{50}=9.12$).

Synthesis and Ligand Based 3D-QSAR of 2,3-Bis-benzylidenesuccinaldehyde Derivatives as New Class Potent FPTase Inhibitor, and Prediction of Active Molecules

  • Soung, Min-Gyu;Kim, Jong-Han;Kwon, Byoung-Mog;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1355-1360
    • /
    • 2010
  • In order to search new inhibitors against farnesyl protein transferase (FPTase), a series of 2,3-bis-benzylidenesuccinaldehyde derivatives (1-29) were synthesized and their inhibition activities ($pI_{50}$) against FPTase were measured. From based on the reported results that the inhibitory activities of dimers 2,3-bis-benzylidenesuccinaldehydes were higher than those of monomers cinnamaldehydes, 3D-QSARs on FPTase inhibitory activities of the dimers (1-29) were studied quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The statistical qualities of the optimized CoMFA model II ($r^2{_{cv.}}$= 0.693 and $r^2{_{ncv.}}$= 0.974) was higher than those of the CoMSIA model II ($r^2{_{cv.}}$ = 0.484 and $r^2{_{ncv.}}$ = 0.928). The dependence of CoMFA models on chance correlations was evaluated with progressive scrambling analyses. And the inhibitory activity exhibited a strong correlation with steric factors of the substrate molecules. Therefore, from the results of graphical analyses on the contour maps and of predicted higher inhibitory active compounds, it is suggested that the structural distinctions and descriptors that contribute to inhibitory activities ($pI_{50}$) against FPTase will be able to applied new inhibitor design.

3D-QSAR Analysis on the Fungicidal Activity with N-Phenylbenzenesulfonamide Analogues against Phytophthora blight (Phytophthora capsici) and Prediction of Higher Active Compounds (고추역병균(Phytophthora capsici)에 대한 N-Phenylbenzenesulfonamide 유도체들의 살균활성에 관한 3D-QSAR 분석과 고활성 화합물의 예측)

  • Soung, Min-Gyu;Kang, Kyu-Young;Cho, Yun-Gi;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.192-197
    • /
    • 2007
  • 3D-QSARs on the fungicidal activity of N-phenylbenzenesulfonamide and N-phenyl-2-thienylsulfonamide analogues (1-37) against Phytophthora blight (Phytophthora capsici) were studied quantitatively using CoMFA and CoMSIA methods. The statistical results of the optimized CoMFA (2) model ($r^2_{cv.}(q^2)$ = 0.692 & $r^2_{ncv.}$= 0.965) show better predictability and fitness than CoMSIA (2) model ($r^2_{cv.}(q^2)$ = 0.796 & $r^2_{ncv.}$= 0.958). The fungicidal activities according to the information of the optimized CoMFA (2) model were dependent upon the steric and electrostatic fields of the molecules. Therefore, from the contribution contour maps of CoMFA (2) model, it is expected that 63% contribution was caused by the steric bulk of meta-substituent ($R_1$) on the S-phenyl ring. Also, the other contribution level of 32.9% was represented by the positive charged $R_4-group$ ($R_1$) on the N-phenyl ring and para-substituent ($R_1$) on the S-phenyl ring. A series of higher active compounds, $R_1$= 3-decyl substituent ($pred.pI_50$= 5.88) etc. were predicted based on the findings.

CoMFA vs. Topomer CoMFA, which One is better a Case Study with 5-Lipoxygenase Inhibitors

  • Gadhe, Changdev G.
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.91-98
    • /
    • 2011
  • Quantitative structure-activity relationships (QSAR) have been applied for two decades in the development of relationships between physicochemical properties of chemical substances and their biological activities to obtain a reliable statistical model for prediction of the activities of new chemical entities. The fundamental principle underlying the QSAR is that the structural difference is responsible for the variations in biological activities of the compounds. In this work, we developed 3D-QSAR model for a series of 5-Lipoxygenase inhibitors, utilizing comparative molecular field analysis (CoMFA) and Topomer CoMFA methodologies. Our developed models addressed superiority of Topomer CoMFA over CoMFA. The CoMFA model was obtained with $q^2$=0.593, $r^2$=0.939, $Q^2$=0.334 with 6 optimum number of components (ONC). Higher statistical results were obtained with the Topomer CoMFA model ($q^2$=0.819, $r^2$=0.947, ONC=5). Further robustness of developed models was checked with the ANOVA test and it shows F=113 for CoMFA and F=162.4 for Topomer CoMFA model. Contour map analysis indicated that the more requirement of electrostatic parameter for improved potency.