• 제목/요약/키워드: prediction of Stock Price

검색결과 154건 처리시간 0.024초

주가 예측 모델에서의 분할 예측을 통한 성능향상 탐구 (Exploring performance improvement through split prediction in stock price prediction model)

  • 여태건우;유도희;남정원;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.503-509
    • /
    • 2022
  • 본 논문의 연구 취지는 예측하고자 하는 다음 날과 이전 날의 시가 사이 변동률을 예측값으로 두고 시가를 예측하는 기존 논문들과는 다르게 예측하고자 하는 다음날의 주가 순위를 일정한 간격으로 분할하여 생성된 각 구간마다의 시가 변동률을 예측값으로 하는 모델을 통하여 최종적인 다음날의 시가 변동률을 예측하는 새로운 시계열 데이터 예측 방식을 제안하고자 한다. 예측값의 세분화 정도와 입력 데이터의 종류에 따른 모델의 성능 변화를 분석했으며 연구 결과 예측값의 세분화 정도에 따른 모델의 예측값과 실제값의 차이가 예측값의 세분화 개수가 3일 때 큰 폭으로 감소한다는 사실도 도출해 낼 수 있었다.

데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안 (Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning)

  • 김영준;김여정;이인선;이홍주
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2019
  • 인공지능 기술이 발전하면서 이미지, 음성, 텍스트 등 다양한 분야에 적용되고 있으며, 데이터가 충분한 경우 기존 기법들에 비해 좋은 결과를 보인다. 주식시장은 경제, 정치와 같은 많은 변수에 의해 영향을 받기 때문에, 주식 가격의 움직임 예측은 어려운 과제로 알려져 있다. 다양한 기계학습 기법과 인공지능 기법을 이용하여 주가 패턴을 연구하여 주가의 등락을 예측하려는 시도가 있어왔다. 본 연구는 딥러닝 기법 중 컨볼루셔널 뉴럴 네트워크(CNN)를 기반으로 주가 패턴 예측률 향상을 위한 데이터 증강 방안을 제안한다. CNN은 컨볼루셔널 계층을 통해 이미지에서 특징을 추출하여 뉴럴 네트워크를 이용하여 이미지를 분류한다. 따라서, 본 연구는 주식 데이터를 캔들스틱 차트 이미지로 만들어 CNN을 통해 패턴을 예측하고 분류하고자 한다. 딥러닝은 다량의 데이터가 필요하기에, 주식 차트 이미지에 다양한 데이터 증강(Data Augmentation) 방안을 적용하여 분류 정확도를 향상 시키는 방법을 제안한다. 데이터 증강 방안으로는 차트를 랜덤하게 변경하는 방안과 차트에 가우시안 노이즈를 적용하여 추가 데이터를 생성하였으며, 추가 생성된 데이터를 활용하여 학습하고 테스트 집합에 대한 분류 정확도를 비교하였다. 랜덤하게 차트를 변경하여 데이터를 증강시킨 경우의 분류 정확도는 79.92%였고, 가우시안 노이즈를 적용하여 생성된 데이터를 가지고 학습한 경우의 분류 정확도는 80.98%이었다. 주가의 다음날 상승/하락으로 분류하는 경우에는 60분 단위 캔들 차트가 82.60%의 정확도를 기록하였다.

  • PDF

주식 가격 변동 예측을 위한 다단계 뉴스 분류시스템 (Multi-stage News Classification System for Predicting Stock Price Changes)

  • 백우진;경명현;민경수;오혜란;임차미;신문선
    • 정보관리학회지
    • /
    • 제24권2호
    • /
    • pp.123-141
    • /
    • 2007
  • 주시가격을 예측하는 것은 주식 가격 변동에 영향을 미치는 많은 요인과 요인 간의 상호작용에 기인하여 매우 어렵다고 알려져 있다. 이 연구는 어떤 회사에 대한 좋은 기사는 그 회사의 주식가격을 오르도록 영향을 미칠 것이고 나쁜 기사는 그 반대의 작용을 할 것이라는 가정에서 시작했다. 여러 회사들에 대한 기사와 그 회사의 주식가격이 기사가 공개된 후에 어떻게 변했는가에 대한 분석을 통하여 위 가정이 맞는 것을 확인했다. 즉 기사의 내용을 기사에 나온 회사에 대하여 호의적인지 아닌지 신뢰성 있게 분류하는 방법이 있다면 어느 정도의 주식 가격 예측은 가능할 것이다. 많은 기사를 일관적으로 빨리 처리하기 위하여 상장회사에 대한 기사를 자동 분석하는 다단계 뉴스 분류시스템을 개발한 후 성능을 확인하여 자동 시스템이 무작위로 주가 변동을 예측했을 경우보다 높은 정확률을 보이는 것을 확인했다.

데이터 마이닝 기법을 통한 COVID-19 팬데믹의 국내 주가 영향 분석: 헬스케어산업을 중심으로 (Using Data Mining Techniques for Analysis of the Impacts of COVID-19 Pandemic on the Domestic Stock Prices: Focusing on Healthcare Industry)

  • 김덕현;유동희;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권3호
    • /
    • pp.21-45
    • /
    • 2021
  • Purpose This paper analyzed the impacts of domestic stock market by a global pandemic such as COVID-19. We investigated how the overall pattern of the stock market changed due to the impact of the COVID-19 pandemic. In particular, we analyzed in depth the pattern of stock price, as well, tried to find what factors affect on stock market index(KOSPI) in the healthcare industry due to the COVID-19 pandemic. Design/methodology/approach We built a data warehouse from the databases in various industrial and economic fields to analyze the changes in the KOSPI due to COVID-19, particularly, the changes in the healthcare industry centered on bio-medicine. We collected daily stock price data of the KOSPI centered on the KOSPI-200 about two years before and one year after the outbreak of COVID-19. In addition, we also collected various news related to COVID-19 from the stock market by applying text mining techniques. We designed four experimental data sets to develop decision tree-based prediction models. Findings All prediction models from the four data sets showed the significant predictive power with explainable decision tree models. In addition, we derived significant 10 to 14 decision rules for each prediction model. The experimental results showed that the decision rules were enough to explain the domestic healthcare stock market patterns for before and after COVID-19.

Time-Invariant Stock Movement Prediction After Golden Cross Using LSTM

  • Sumin Nam;Jieun Kim;ZoonKy Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.59-66
    • /
    • 2023
  • 골든크로스를 흔히 매수의 신호로 인식하지만, 주식시장은 변동성이 매우 크기에 골든크로스만으로 주식의 등락 여부를 예상하고 의사결정을 내리기에는 무리가 있다. 마찬가지로, 이러한 주가 데이터의 불확실성은 기존의 시계열 기반의 예측을 더욱 어렵게 한다. 본 논문에서는 골든크로스를 하나의 사건으로 인식하여, time-invariant 한 접근을 시도하고자 한다. LSTM 신경망 기법을 사용하여 골든크로스 이후의 주가 변화율을 예측하고, 기존의 시계열 분석에서 도출한 성능과 종목별로 비교한다. 또한, 0을 기준으로 한 주가 변화율의 등락을 혼동행렬로 분류하여 일반화 분류 성능을 입증한다. 최종적으로 본 논문은 예측 정밀도가 83%인 모델을 제안하였다. 골든크로스가 나타날 때 모든 상황에서 매수를 결정하기보다 모델을 활용하여 투자자의 투자 자본 손실을 방지할 수 있다.

Competition between Online Stock Message Boards in Predictive Power: Focused on Multiple Online Stock Message Boards

  • Kim, Hyun Mo;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • 제26권4호
    • /
    • pp.526-541
    • /
    • 2016
  • This research aims to examine the predictive power of multiple online stock message boards, namely, NAVER Finance and PAXNET, which are the most popular stock message boards in South Korea, in stock market activities. If predictive power exists, we then compare the predictive power of multiple online stock message boards. To accomplish the research purpose, we constructed a panel data set with close price, volatility, Spell out acronyms at first mention.PER, and number of posts in 40 companies in three months, and conducted a panel vector auto-regression analysis. The analysis results showed that the number of posts could predict stock market activities. In NAVER Finance, previous number of posts positively influenced volatility on the day. In PAXNET, previous number of posts positively influenced close price, volatility, and PER on the day. Second, we confirmed a difference in the prediction power for stock market activities between multiple online stock message boards. This research is limited by the fact that it only considered 40 companies and three stock market activities. Nevertheless, we found correlation between online stock message board and stock market activities and provided practical implications. We suggest that investors need to focus on specific online message boards to find interesting stock market activities.

딥러닝을 활용한 실시간 주식거래에서의 매매 빈도 패턴과 예측 시점에 관한 연구: KOSDAQ 시장을 중심으로 (A Study on the Optimal Trading Frequency Pattern and Forecasting Timing in Real Time Stock Trading Using Deep Learning: Focused on KOSDAQ)

  • 송현정;이석준
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권3호
    • /
    • pp.123-140
    • /
    • 2018
  • Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.

온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측 (Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news)

  • 정지선;김동성;김종우
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.37-51
    • /
    • 2015
  • 인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집 분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 '에너지/화학', '생활소비재', '경기소비재'의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, '정보기술'과 '조선/운송' 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.

특수관계자 거래가 주가급락에 미치는 영향 (The Effect of Related Party Transactions on Crash Risk)

  • 유혜영
    • 산경연구논집
    • /
    • 제9권6호
    • /
    • pp.49-55
    • /
    • 2018
  • Purpose - This paper examines the effect of related party transactions on crash firm-specific stock price crash risk. Ownership of a typical Korean conglomerate is concentrated in a single family. In those entities, management and board positions are often filled by family members. Therefore, a dominant shareholder can benefit from related party transactions. In Korea, firms have to report related party transactions in financial statement footnotes. However, those are not disclosed in detail. The more related party transactions are the greater information risk. Thus, companies with related party transactions are likely to experience stock price crashes. Research design, data, and methodology - 2,598 firm-year observations are used for the main analysis. Those samples are from TS2000 database from 2009 to 2013, and the database covers KOSPI-listed firms in Korea. The proxy for related party transactions (RTP) is calculated by dividing total transactions to the related-party by total sales. A dummy variable is used as a dependent variable (CRASH) in the regression model. Logistic regression is used to explain the relationship between related party transactions and crash risk. Then, the sample was separated into two groups; tunneling firms and propping firms. The relation between related party transactions and crash risk variances with features of the transaction were investigated. Results - Using a sample of KOSPI-listed firms in TS2000 database for the period of 2009-2013, I find that stock price crash risk increases as the trade volume of related-party transactions increases. Specifically, I find that the coefficient of RPT is significantly positive, supporting the prediction. In addition, this relationship is strong and robust in tunneling firms. Conclusions - The results report that firms with related party transactions are more likely to experience stock price crashes. The results mean that related party transactions increase the possibility of future stock price crashes by enlarging information asymmetry between controlling shareholders and minority shareholders. In case of tunneling, it could be seen that related party transactions are positively associated with stock crash risk. The result implies that the characteristic of the transaction influences crash risk. This study is related to a literature that investigates the effect of related party transactions on the stock market.

주가 경향 예측 모델의 공정한 성능 평가 방법 (Fair Performance Evaluation Method for Stock Trend Prediction Models)

  • 임정수
    • 한국콘텐츠학회논문지
    • /
    • 제20권10호
    • /
    • pp.702-714
    • /
    • 2020
  • 주식 투자는 재테크의 하나로 금리 인하와 비과세 제도의 축소에 따라 주목을 받기 시작했다. 그러나 투자에 전문적인 지식이 필요할 뿐 아니라 위험 부담이 크다는 단점이 있다. 따라서 주가 경향의 정확한 예측은 개인투자자에게나 주식 투자 관련 서비스를 제공하는 회사에 중요한 능력이며, 더욱 정확한 예측을 위한 연구가 활발히 진행 중이다. 그러나 예측 연구들의 공정한 비교와 최고의 예측 모델을 얻기 위한 하이퍼-파라미터의 최적화에는 예측 모델의 성능을 정확하게 평가하는 방법이 필요한데, 지금까지 예측 모델의 성능 평가에 대한 연구는 미진한 상태이며, 기존 방법들을 그대로 답습하고 있는 실정이다. 이에 본 논문에서는 주가 예측 모델 성능 평가를 측정기준과 데이터 구성의 관점에서 분석하고, 예측 불균형 비율을 이용한 주가 경향 예측 모델의 공정한 성능 평가 방법을 제안한다.