• Title/Summary/Keyword: prediction equation.

Search Result 1,886, Processing Time 0.037 seconds

Prediction of Soil Erosion from Agricultural Uplands under Precipitation Change Scenarios (우리나라 강우량 변화 시나리오에 따른 밭토양의 토양 유실량 변화 예측)

  • Kim, Min-Kyeong;Hur, Seong-Oh;Kwon, Soon-Ik;Jung, Goo-Bok;Sonn, Yeon-Kyu;Ha, Sang-Keun;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.789-792
    • /
    • 2010
  • Major impacts of climate change expert that soil erosion rate may increase during the $21^{st}$ century. This study was conducted to assess the potential impacts of climate change on soil erosion by water in Korea. The soil loss was estimated for regions with the potential risk of soil erosion on a national scale. For computation, Universal Soil Loss Equation (USLE) with rainfall and runoff erosivity factors (R), cover management factors (C), support practice factors (P) and revised USLE with soil erodibility factors (K) and topographic factors (LS) were used. RUSLE, the revised version of USLE, was modified for Korean conditions and re-evaluate to estimate the national-scale of soil loss based on the digital soil maps for Korea. The change of precipitation for 2010 to 2090s were predicted under A1B scenarios made by National Institute of Meteorological Research in Korea. Future soil loss was predicted based on a change of R factor. As results, the predicted precipitations were increased by 6.7% for 2010 to 2030s, 9.5% for 2040 to 2060s and 190% for 2070 to 2090s, respectively. The total soil loss from uplands in 2005 was estimated approximately $28{\times}10^6$ ton. Total soil losses were estimated as $31{\times}10^6$ ton in 2010 to 2030s, $31{\times}10^6$ ton in 2040 to 2060s and $33{\times}10^6$ ton in 2070 to 2090s, respectively. As precipitation increased by 17% in the end of $21^{st}$ century, the total soil loss was increased by 12.9%. Overall, these results emphasize the significance of precipitation. However, it should be noted that when precipitation becomes insignificant, the results may turn out to be complex due to the large interaction among plant biomass, runoff and erosion. This may cause increase or decrease the overall erosion.

Analysis of the Effects of Some Meteorological Factors on the Yield Components of Rice (수도 수량구성요소에 미치는 기상영향의 해석적 연구)

  • Seok-Hong Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.54-87
    • /
    • 1975
  • The effects of various weather factors on yield components of rice, year variation of yield components within regions, and regional differences of yield components within year were investigated at three Crop Experiment Stations O.R.D., Suweon, Iri, Milyang, and at nine provincial Offices of Rural Development for eight years from 1966 to 1973 for the purpose of providing information required in improving cultural practices and predicting the yield level of rice. The experimental results analyzed by standard partial regression analysis are summarized as follows: 1. When rice was grown in ordinary seasonal culture the number of panicles greatly affected rice yield compared to other yield components. However, when rice was seeded in ordinary season and transplanted late, and transplanted in ordinary season in the northern area the ratio of ripening was closely related to the rice yield. 2. The number of panicles showed the greatest year variation when the Jinheung variety was grown in the northern area. The ripening ratio or 1, 000 grain weight also greatly varied due to years. However, the number of spikelets per unit area showed the greatest effects on yield of the Tongil variety. 2. Regional variation of yield components was classified into five groups; 1) Vegetation dependable type (V), 2) Partial vegetation dependable type (P), 3) Medium type (M), 4) Partial ripening dependable type (P.R), and 5) Ripening dependable type (R). In general, the number of kernel of rice in the southern area showed the greatest partial regression coefficient among yield components. However, in the mid-northern part of country the ripening ratio was one of the component!; affecting rice yield most. 4. A multivariate equation was obtained for both normal planting and late planting by log-transforming from the multiplication of each component of four yield components to additive fashion. It revealed that a more accurate yield could be estimated from the above equation in both cases of ordinary seasonal culture and late transplanting. 5. A highly positive correlation coefficient was obtained between the number of tillers from 20 days after transplanting and the number of panicles at each(tillering) stage 20 days after transplanting in normal planting and late planting methods. 6. A close relationship was found between the number of panicles and weather factors 21 to 30 days, after transplanting. 7. The average temperature 31 to 40 days after transplanting was greatly responsible for the maximum number of tillers while the number of duration of sunshine hours per day 11 to 30 days after transplantation was responsible for that character. The effect of water temperature was negligible. 8. No reasonable prediction for number of panicles was calculated from using either number of tillers or climatic factors. The number of panicles could early be estimated formulating a multiple equation using number of tillers 20 days after transplantation and maximum temperature, temperature range and duration of sunshine for the period of 20 days from 20 to 40 days after transplantation. 9. The effects of maximum temperature and day length 25 to 34 days before heading, on kernel number per panicle, were great in the mid-northern area. However, the minimum temperature and day length greatly affected the kernel number per panicle in the southern area. The maximum temperature had a negative relationship with the kernel number per panicle in the southern area. 10. The maximum temperature was highly responsible for an increased ripening ratio. On the other hand, the minimum temperature at pre-heading and early ripening stages showed an adverse effect on ripening ratio. 11. The 1, 000 grain weight was greatly affected by the maximum temperature during pre- or mid-ripening stage and was negatively associated with the minimum temperature over the entire ripening period.

  • PDF

Upper Boundary Line Analysis of Rice Yield Response to Meteorological Condition for Yield Prediction I. Boundary Line Analysis and Construction of Yield Prediction Model (최대경계선을 이용한 벼 수량의 기상반응분석과 수량 예측 I. 최대경계선 분석과 수량예측모형 구축)

  • 김창국;이변우;한원식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.241-247
    • /
    • 2001
  • Boundary line method was adopted to analyze the relationships between rice yield and meteorological conditions during rice growing period. Boundary lines of yield responses to mean temperature($T_a$) and sunshine hour( $S_{h}$) and diurnal temperature range($T_r$) were well-fitted to hyperbolic functions of f($T_a$) =$$\beta$_{0t}$(1-EXP(-$$\beta$_{1t}$ $\times$ ($T_a$) ) and f( $S_{h}$)=$$\beta$_{0t}$((1-EXP($$\beta$_{1t}$$\times$ $S_{h}$)), to quadratic function of f($T_r$) =$\beta$$_{0r}$(1-($T_r$ 1r)$^2$), respectively. to take into account to, the sterility caused by low temperature during reproductive stage, cooling degree days [$T_c$ =$\Sigma$(20-$T_a$] for 30 days before heading were calculated. Boundary lines of yield responses to $T_c$ were fitted well to exponential function of f($T_c$) )=$\beta$$_{0c}$exp(-$$\beta$_{1c}$$\times$$T_c$ ). Excluding the constants of $\beta$$_{0s}$ from the boundary line functions, formed are the relative function values in the range of 0 to 1. And these were used as yield indices of the meteorological elements which indicate the degree of influence on rice yield. Assuming that the meteorological elements act multiplicatively and independently from each other, meteorological yield index (MIY) was calculated by the geometric mean of indices for each meteorological elements. MIY in each growth period showed good linear relationship with rice yield. The MIY's during 31 to 45 days after transplanting(DAT) in vegetative stage, during 30 to 16 days before heading (DBH) in reproductive stage and during 20 days after heading (DAH) in ripening stage showed greater explainablity for yield variation in each growth stage. MIY for the whole growth period was calculated by the following three methods of geometric mean of the indices for vegetative stage (MIVG), reproductive stage (HIRG) and ripening stage (HIRS). MI $Y_{I}$ was calculated by the geometric mean of meteorological indices showing the highest determination coefficient n each growth stage of rice. That is, (equation omitted) was calculated by the geometric mean of all the MIY's for all the growth periods devided into 15 to 20 days intervals from transplanting to 40 DAH. MI $Y_{III}$ was calculated by the geometric mean of MIY's for 45 days of vegetative stage (MIV $G_{0-45}$ ), 30 days of reproductive stage (MIR $G_{30-0}$) and 40 days of ripening stage (MIR $S_{0-40}$). MI $Y_{I}$, MI $Y_{II}$ and MI $Y_{III}$ showed good linear relationships with grain yield, the coefficients of determination being 0.651, 0.670 and 0.613, respectively.and 0.613, respectively.

  • PDF

The Influence of Aging on Pulmonary Function Tests in Elderly Korean Population (한국에서 노화에 따른 폐기능지표의 변화양상)

  • Lee, Jae-Myung;Kim, Eun-Jung;Kang, Min-Jong;Son, Jee-Woong;Lee, Seung-Joon;Kim, Dong-Gyu;Park, Myung-Jae;Lee, Myung-Goo;Hyun, In-Gyu;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.752-759
    • /
    • 2000
  • Background : Many studies have shown that pulmonary function differs widely among race, age and geographical residency. By virtue of the improvement of nutrition and environment, the elderly population in Korea is markedly increasing and so are the ages of patients complaining respiratory symptoms. However, we do not have our own data on the pulmonary functional reserve of elderly persons in Korea. We evaluate the deterioration of pulmonary functional reserve and standardize the predictive values of pulmonary function in the elderly population. Method : Pulmonary function tests were conducted in 100 men and 100 women over the age of 65. We analyzed changes of FVC and $FEV_1$ according to age and height by linear regression. We compared our new multiple linear regression equation with other equations currently used in Korea. Results : In men, the mean age was $71.5{\pm}5.2$(mean${\pm}$SD) years and the mean height was $163.6{\pm}6.2$cm. The mean FVC was $3.42{\pm}0.49{\ell}$ and the mean $FEV_1, $2.72{\pm}v$. In women, the mean age was $72.0{\pm}5.1$ years and the mean height was $149.1{\pm}5.9$cm. The mean FVC was $2.22{\pm}0.42{\ell}$ and the mean $FEV_1$ $1.83{\pm}0.34{\ell}$. Multiple linear regression equation using age and height as an independent factors was as follows : FVC(${\ell}$)=1.857-0.0356$\times$age(year)+0.02517$\times$height(cm) (p<0.01, $R^2$=0.279), $FEV_1(${\ell}$)=1.340-0.02698$\times$age(year)+0.02021$\times$height(cm) (p<0.01, $R^2$=0.255) in men, FVC(${\ell}$) =-0.09765-0.03332$\times$age(year)+0.03164$\times$height(cm) (p<0.01, $R^2$=0.435), $FEV_1(${\ell}$)=-0.l69-0.02469$\times$age(year)+0.02539$\times$height(cm) (p<0.01, $R^2$=0.41) in women. Conclusion : We established prediction regressions for pulmonary functional tests in the elderly Korean population. We also confirmed that currently adopted equations do not exactly anticipate the expected pulmonary functional reserve in the aged person over 65 years old. We suggest that our new equations from this study should be applied to interpret the pulmonary function tests in the elderly population in Korea.

  • PDF

Fertility and Rate of Fertilizer Application for Orchard Soils of Apple and Pear (사과 및 배 과수토양(果樹土壤)의 비옥도구분(肥沃度區分)에 의한 시비기준(施肥基準) 설정(設定))

  • Lee, Choon-Soo;Lee, Ju-Young;Lee, Yong-Jae;Shin, Jae-Sung;Han, Ki-Hak;Kim, Dong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.103-110
    • /
    • 1993
  • This study was made to evaluate the chemical properties of 481 farmers' orchard fields in An-Seong area. And the reasonable ferilizer rates were recommended utilizing the result of soil analysis. The results are summarized as follows : 1. As the soil fertility status of collected soil samples were evaluated on the basis of temporary optimal range for each soil chemical properties, 12.7 to 49.6% of the total 481 farmers' fields were range for soil improvement. 2. The contents of chemical component have a tendancy to decrease with depth gradually from surface to subsoil. 3. According to the relationship between the contents of soil component in subsoil and those in surface soil, the fertility condition of subsoil could be estimated on the basis of analysis data of surface soil. 4. The multiple regression equation for pear yield prediction to the organic matter and exchangable calcium contents in the soil were obtained. 5. Referring the average value, distribution ratio compared to the optimum level for each soil chemical properties and standard fertilizer rate, the soil fertility status could be categorized as "High" "Medium" and "Low". For each category, the recommended amounts for NPK and organic matter application were established. 6. The recommended rates through soul fertility diagnosis were less than farmer's dosage in the range 7.1~7.7 kg/10a for N, 0.8~11.5 kg/10a for $P_2O_5$, 7.1~19.9 kg/10a for $K_2O$ and 90~116 kg/10a for lime.

  • PDF

Evaluation of Factors Related to Productivity and Yield Estimation Based on Growth Characteristics and Growing Degree Days in Highland Kimchi Cabbage (고랭지배추 생산성 관련요인 평가 및 생육량과 생육도일에 의한 수량예측)

  • Kim, Ki-Deog;Suh, Jong-Taek;Lee, Jong-Nam;Yoo, Dong-Lim;Kwon, Min;Hong, Soon-Choon
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.911-922
    • /
    • 2015
  • This study was carried out to evaluate growth characteristics of Kimchi cabbage cultivated in various highland areas, and to create a predicting model for the production of highland Kimchi cabbage based on the growth parameters and climatic elements. Regression model for the estimation of head weight was designed with non-destructive measured growth variables (NDGV) such as leaf length (LL), leaf width (LW), head height (HH), head width (HW), and growing degree days (GDD), which was $y=6897.5-3.57{\times}GDD-136{\times}LW+116{\times}PH+155{\times}HH-423{\times}HW+0.28{\times}HH{\times}HW{\times}HW$, ($r^2=0.989$), and was improved by using compensation terms such as the ratio (LW estimated with GDD/measured LW ), leaf growth rate by soil moisture, and relative growth rate of leaf during drought period. In addition, we proposed Excel spreadsheet model for simulation of yield prediction of highland Kimchi cabbage. This Excel spreadsheet was composed four different sheets; growth data sheet measured at famer's field, daily average temperature data sheet for calculating GDD, soil moisture content data sheet for evaluating the soil water effect on leaf growth, and equation sheet for simulating the estimation of production. This Excel spreadsheet model can be practically used for predicting the production of highland Kimchi cabbage, which was calculated by (acreage of cultivation) ${\times}$ (number of plants) ${\times}$ (head weight estimated with growth variables and GDD) ${\times}$ (compensation terms derived relationship of GDD and growth by soil moisture) ${\times}$ (marketable head rate).

Prediction of Growth of Escherichia coli O157 : H7 in Lettuce Treated with Alkaline Electrolyzed Water at Different Temperatures

  • Ding, Tian;Jin, Yong-Guo;Rahman, S.M.E.;Kim, Jai-Moung;Choi, Kang-Hyun;Choi, Gye-Sun;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • This study was conducted to develop a model for describing the effect of storage temperature (4, 10, 15, 20, 25, 30 and $35^{\circ}C$) on the growth of Escherichia coli O157 : H7 in ready-to-eat (RTE) lettuce treated with or without (control) alkaline electrolyzed water (AIEW). The growth curves were well fitted with the Gompertz equation, which was used to determine the specific growth rate (SGR) and lag time (LT) of E. coli O157 : H7 ($R^2$ = 0.994). Results showed that the obtained SGR and LT were dependent on the storage temperature. The growth rate increased with increasing temperature from 4 to $35^{\circ}C$. The square root models were used to evaluate the effect of storage temperature on the growth of E. coli O157 : H7 in lettuce samples treated without or with AIEW. The coefficient of determination ($R^2$), adjusted determination coefficient ($R^2_{Adj}$), and mean square error (MSE) were employed to validate the established models. It showed that $R^2$ and $R^_{Adj}$ were close to 1 (> 0.93), and MSE calculated from models of untreated and treated lettuce were 0.031 and 0.025, respectively. The results demonstrated that the overall predictions of the growth of E. coli O157: H7 agreed with the observed data.

Behavior and Analysis of Laterally Loaded Model Pile in Nak-dong River Fine Sand

  • Kim, Young-Su;Seo
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-46
    • /
    • 1998
  • This paper shows that there are the results of a series of model tests on the behavior of single pipe pile which is subjected to lateral load in, Nak-dong River sand. The purpose of the present paper is to estimate the effect of Non-homogeneity. constraint condition of pile head, lateral load velocity, relative density, and embedded length of pile on the behavior of single pile. These effects can be quantified only by the results of model tests. Also, these are compared with the results of the numerical methods (p-y method, modified Vlasov method; new ${\gamma}$ parameter, Characteristic Load Method'CLM). In this study, a new ${\gamma}$ parameter equation based on the Vlasov method was developed to calculate the modulus of subgrade reaction (E. : nhz.) proportional to the depth. The p-y method of analysis is characterized by nonlinear behavior. and is an effective method of designing deep foundations subjected to lateral loads. The new method, which is called the characteristic load method (CLM). is simpler than p-y analysis. but its results closely approximates p-y analysis results. The method uses dimensional analysis to characterize the nonlinear behavior of laterally loaded piles with respect to be relationships among dimensionless variables. The modulus of subgrade reaction used in p-y analysis and modified Vlasov method obtained from back analysis using direct shear test (DST) results. The coefficients obtained from DST and the modified ones used for the prediction of lateral behavior of ultimate soil reaction range from 0.014 to 0.05. and from 0.2 to 0.4 respectively. It is shown that the predicted numerical results by the new method (CLM), p-y analysis, and modified Vlasov method (new parameter) agree well with measured results as the relative density increases. Also, the characteristic load method established applicability on the Q-Mnu. relationship below y/D=0.2.

  • PDF

A study of Korean Norm about tooth size and ratio in Korean adults with normal occlusion (한국성인 정상교합자의 치아크기와 비율에 관한 연구)

  • Kim, Dae-Sik;Kim, Young-Jun;Choi, Jae-Hoon;Han, Jong-Hoon
    • The korean journal of orthodontics
    • /
    • v.31 no.5 s.88
    • /
    • pp.505-515
    • /
    • 2001
  • The purpose of this study was to measure the average tooth size of Korean with normal occlusion. According to the study, the average tooth ratios between the upper and lower teeth which could assure the proper ovebite, overjet and good interdigitation were calculated. The normal occluson sample of this study consisted of 43 Korean male adults and 51 Korean female adults. Among them, 22 Korean male adults and 51 Korean female adults were from KAO(Korean Association of Orthodontists), 21 Korean male adults were from Department of Orthodontics, College of Dentistry, Yonsei University. The results from this study were as follows : 1 The average tooth size of Korean Norm classified by male and female was measured. 2. The average tooth size of Korean male adults with normal occlusion was significantly larger than that of Korean female adults except upper and lower first molars. (p<0.05) 3. The tooth ratio which could Predict the proper overbite and overjet in anterior teeth and proper occlusion in posterior teeth was calculated. 1) Sum of inciosrs = 4:2.97 2) Neff's anterior coefficient = 1.22 3) Bolton's anterior ratio = 78.29%, overall ratio = 91.14% 4. A positive correlation was observed between the sum of lower anterior incisors and the sum of unilateral canine and premolars In each jaw. Based this correlation, the regression equation was made which could Predict the sum of unerupted unilateral canine and premolars in mired dentition. 1) Sum of unilateral unerupted upper canine and premolars' width = 10.435018 + 0.513346 ${\times}$ (sum or lower 4 incisors' width) 2) Sum of unilateral unerupted lower canine and premolars' width = 9.654002 + 0.502565 ${\times}$ (sum of lower 4 incisors' width)

  • PDF

Throughfall, Stemflow and Interception Loss at Pinus taeda and Pinus densiflora stands (테다소나무림과 소나무림에서의 수관통과우량(樹冠通過雨量), 수간유하우량(樹幹流下雨量) 및 차단손실우량(遮斷損失雨量))

  • Min, Hong-Jin;Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.502-516
    • /
    • 1995
  • The objective of this study was to estimate throughfall, stemflow, interception loss and net rainfall in relation to rainfall interception, and to understand the factors affecting interception process at Pinus taeda stand and Pinus densiflora stand in the Research Forests of Seoul National University, located in Choosan, Kwangyang, Chollanamdo. 1. The gross rainfall during the period of field observation was 3,107.6mm(average 1,035.9mm/year). Most of the daily rainfall intensity was under 30mm, which was 90% in 1992, 81% in 1993 and 88% in 1994. 2. In this study the throughfall, stemflow, interception loss and net rainfall were expressed separately as a function of gross rainfall. The overall throughfall collected during the period of field observation was 2,432.5mm(78.3%) at Pinus taeda stand and 2,699.6mm at Pinus densiflora stand, out of total rainfall of 3107.6mm. The canopy storage capacity, which was determined by the prediction equation between gross rainfall and throughfall was 1.1mm at Pinus taeda stand and 1.3mm at Pinus densiflora stand. 3. The sums of stemflow from measurement of total rainfall at Pinus taeda stand and Pinus densiflora stand was 227.3mm(7.3%) and 62.7mm(2.0%), respectively. The minimum rainfall causing stemflow was estimated as 7.2mm at Pinus taeda stand and 1.9mm at Pinus densiflora stand. 4. Interception loss accounted for 447.8mm(14.4%) at Pinus taeda stand and 345.3mm(11.1%) at Pinus densiflorra stand. 5. Net rainfall was 2,659.8mm(85.6%) at Pinus taeda stand and 2,762.3mm(88.9%) at Pinus densiflora stand. 6. The rates of throughfall and stemflow increased with increasing the gross rainfall. However, the amounts of throughfall and the stemflow were constant above 30mm at Pinus taeda stand and 50mm at Pinus densiflora stand. The rates of interception loss decreased with increasing the gross rainfall. However, the amount of interception loss was constant above 50mm at Pinus taeda stand and Pinus densiflora stand.

  • PDF