• Title/Summary/Keyword: predicted strength

Search Result 1,206, Processing Time 0.033 seconds

A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression

  • Wang, C.C.;Chen, T.T.;Wang, H.Y.;Huang, Chi
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.531-545
    • /
    • 2014
  • The purpose of this paper is to develop a prediction model for the compressive strength of waste LCD glass applied in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. The hyperbolic function was used to perform the nonlinear-multivariate regression analysis of the compressive strength prediction model with the following parameters: water-binder ratio w/b, curing age t, and waste glass content G. According to the relative regression analysis, the compressive strength prediction model is developed. The calculated results are in accord with the laboratory measured data, which are the concrete compressive strengths of different mix proportions. In addition, a coefficient of determination $R^2$ value between 0.93 and 0.96 and a mean absolute percentage error MAPE between 5.4% and 8.4% were obtained by regression analysis using the predicted compressive analysis value, and the test results are also excellent. Therefore, the predicted results for compressive strength are highly accurate for waste LCD glass applied in concrete. Additionally, this predicted model exhibits a good predictive capacity when employed to calculate the compressive strength of washed glass sand concrete.

Nominal axial and flexural strengths of high-strength concrete columns

  • Al-Kamal, Mustafa Kamal
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2019
  • The ACI building code is allowing for higher strength reinforcement and concrete compressive strengths. The nominal strength of high-strength concrete columns is over predicted by the current ACI 318 rectangular stress block and is increasingly unconservative as higher strength materials are used. Calibration of a rectangular stress block to address this condition leads to increased computational complexity. A triangular stress block, derived from the general shape of the stress-strain curve for high-strength concrete, provides a superior solution. The nominal flexural and axial strengths of 150 high-strength concrete columns tests are calculated using the proposed stress distribution and compared with the predicted strength using various design codes and proposals of other researchers. The proposed triangular stress model provides similar level of accuracy and conservativeness and is easily incorporated into current codes.

Size Effect on Shear Strength of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보의 전단강도에 관한 크기효과)

  • 김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.155-160
    • /
    • 1992
  • In this study , the size effect on diagonal shear failure of reinforced high strength concrete beams was investigated, For this purpose, ten singly reinforced high strength concrete beams without web reinforcement were tested for five different dimensions of effective depth which were varied from 67mm to 915mm. The compressive strength of concrete used in this study was 53.7 MPa. One type of reinforcing bar with nominal yield strength of 400 MPa was used. Test results were analyzed and compared with strength predicted by ACI code equation, Zutty's equation and Bazant &Kim's equation. As the results, ACI code equation was seriously unconservative for beams with d of 915mm. Bazant & Kim's equation predicted well the trend of test data. Within the scope of this study, there was no clear difference in size effect with variation of compressive strength of concrete.

  • PDF

A Study on the Strength Prediction of Three-Component Concrete by Maturity Method (적산온도 기법을 활용한 3성분계 콘크리트의 강동예측에 관한 연구)

  • 장종호;김영덕;길배수;김정일;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.237-242
    • /
    • 2003
  • The object of this study is to investigate the strength development properties and the strength prediction of three-component concrete using the fly ash and the blast-furnace slag by a maturity method. The results were as follows. The values of the activation energy on this experiment are calculated as 38.69, 36.47, 32.46, 30.99 KJ/mol in the W/B 60, 55, 50, 45%. And it is considered that the equivalent age can be used to predict strength of the three-component concrete in the optional age. Also the strength of the three-component concrete can be predicted from the result of high correlation between predicted strength and measured strength.

  • PDF

Tensile Behavior of Pin-Loaded Carbon/Epoxy Composite Laminates (핀하중을 받는 탄소섬유/에폭시 복합적층판의 인장거동)

  • 박동창;황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2518-2534
    • /
    • 1993
  • Fracture behavior of carbon/epoxy laminates under pin loading is studied experimentally and analytically. Effects of ratios of specimen width to hole diameter and edge distance to hole diameter on bearing strength are investigated. Characteristic length of the laminates obtained using HK model has good agreement with the experimental data. The larger hole size induced, the lower bearing strength is measured under pin loading . The bearing strength and failure mode could be predicted using HK model and Zhangs analytical solution of stress distribution around a pin loaded hole. Chamis' prediction method of bearing strength is also considered to predict failure mode and bearing strength. A modification of Chamis' method is made using the factor of rupturc. The predicted bearing strength by the modified method is reasonably close to the experimental data.

An Experimental Study on the Application of the Maturity Method of Ground Granulated Blast Furnace Slag(GGBFS) Concrete to Calculate the Concrete Strength Correction Value(mSn) (고로슬래그 콘크리트의 구조체 보정강도(mSn) 산정을 위한 고로슬래그 혼입 구조체 콘크리트의 적산온도법 적용에 관한 실험적 연구)

  • Kim, Han-Sol;Jeong, Min-Gu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.147-148
    • /
    • 2023
  • Recently, as blast furnace slag concrete has become widely used, managing the strength of concrete has become important. mSn is a method of correcting the difference in strength between standard cured specimens and concrete exposed to changes in temperature. In this study, the predicted strength based on the maturity of the central and outer parts of the blast furnace slag concrete structure is compared with the actual strength measured through coring. As a result, the actual strength difference between the center and the outer part of the concrete mixed with blast furnace slag was larger than the predicted strength difference.

  • PDF

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

A Fundamental Study on Development of Arduino Wireless Sensor System for Prediction of Concrete Compressive Strength using Maturity (적산온도 기반 콘크리트의 압축강도 예측을 위한 무선 아두이노 센서 시스템 개발에 관한 기초 연구)

  • Kim, Han-Sol;Moon, Dong-Hwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.67-68
    • /
    • 2019
  • The mechanical and durability characteristics of concrete structures depend on the construction environment, material conditions, design conditions, and temperature and humidity environment after casting. However, wired communicati-on sensors which are mainly used in the field have many limitations in their usability and monitoring. In this study, all temperature and humidity data measured from embedded sensors are monitored via a wireless sensor network. Based on the measured temperature data, the predicted compressive strength of the concrete was compared with the actual compressive strength. As a result, The error between predicted strength and experimental strength has decreased over time.

  • PDF

An Experimental Study on the Prediction of Concrete Compressive Strength by the Maturity Method Using Embedded Wireless Temperature and Humidity Sensor (콘크리트 매립형 무선 온습도 센서 기반 적산온도법을 이용한 콘크리트 압축강도 예측에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.94-95
    • /
    • 2018
  • Prediction of compressive strength of concrete by Maturity Method is applied in construction site. However, due to the use of wired type high-priced equipment, economic efficiency and workability are falling. In this study, a newly developed concrete embedded wireless sensor is used to perform a mock-up test. Next, the concrete compressive strength of the Maturity Method is predicted using Saul and Plowman's function as measured temperature data. The predicted concrete strength at the beginning of the age was the actual strength and stiffness, but the error rate was less than 1% at 28th day.

  • PDF

Application of internet of things for structural assessment of concrete structures: Approach via experimental study

  • D. Jegatheeswaran;P. Ashokkumar
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Assessment of the compressive strength of concrete plays a major role during formwork removal and in the prestressing process. In concrete, temperature changes occur due to hydration which is an influencing factor that decides the compressive strength of concrete. Many methods are available to find the compressive strength of concrete, but the maturity method has the advantage of prognosticating strength without destruction. The temperature-time factor is found using a LM35 temperature sensor through the IoT technique. An experimental investigation was carried out with 56 concrete cubes, where 35 cubes were for obtaining the compressive strength of concrete using a universal testing machine while 21 concrete cubes monitored concrete's temperature by embedding a temperature sensor in each grade of M25, M30, M35, and M40 concrete. The mathematical prediction model equation was developed based on the temperature-time factor during the early age compressive strength on the 1st, 2nd, 3rd and 7th days in the M25, M30, M35, and M40 grades of concrete with their temperature. The 14th, 21st and 28th day's compressive strength was predicted with the mathematical predicted equation and compared with conventional results which fall within a 2% difference. The compressive strength of concrete at any desired age (day) before reaching 28 days results in the discovery of the prediction coefficient. Comparative analysis of the results found by the predicted mathematical model show that, it was very close to the results of the conventional method.