• Title/Summary/Keyword: predicted error expansion

Search Result 17, Processing Time 0.022 seconds

High-Capacity Reversible Watermarking through Predicted Error Expansion and Error Estimation Compensation (추정 오차 확장 및 오류 예측 보정을 통한 고용량 가역 워터마킹)

  • Lee, Hae-Yeoun;Kim, Kyung-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.275-286
    • /
    • 2010
  • Reversible watermarking which can preserve the original quality of the digital contents and protect the copyright has been studied actively. Especially, in medical, military, and art fields, the need for reversible watermarking is increasing. This paper proposes a high-capacity reversible watermarking through predicted error expansion and error estimation compensation. Watermark is embedded by expanding the difference histogram between the original value and the predicted value. Differently from previous methods calculating the difference between adjacent pixels, the presented method calculates the difference between the original value and the predicted value, and that increases the number of the histogram value, where the watermark is embedded. As a result, the high capacity is achieved. The inserted watermark is extracted by restoring the histogram between the original value and the predicted value. To prove the performance, the presented algorithm is compared with other previous methods on various test images. The result supports that the presented algorithm has a perfect reversibility, a high image quality, and a high capacity.

Numerical Investigations in Choosing the Number of Principal Components in Principal Component Regression - CASE I

  • Shin, Jae-Kyoung;Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.127-134
    • /
    • 1997
  • A method is proposed for the choice of the number of principal components in principal component regression based on the predicted error sum of squares. To do this, we approximately evaluate that statistic using a linear approximation based on the perturbation expansion. In this paper, we apply the proposed method to various data sets and discuss some properties in choosing the number of principal components in principal component regression.

  • PDF

Reversible Watermarking Method Using Optimal Histogram Pair Shifting Based on Prediction and Sorting

  • Hwang, Hee-Joon;Kim, Hyoung-Joong;Sachnev, Vasiliy;Joo, Sang-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.655-670
    • /
    • 2010
  • To be reversible as a data hiding method, the original content and hidden message should be completely recovered. One important objective of this approach is to achieve high embedding capacity and low distortion. Using predicted errors is very effective for increasing the embedding capacity. Sorting the predicted errors has a good influence on decreasing distortion. In this paper, we present an improved reversible data hiding scheme using upgraded histogram shifting based on sorting the predicted errors. This new scheme is characterized by the algorithm which is able to find the optimum threshold values and manage the location map effectively. Experimental results compared with other methods are presented to demonstrate the superiority of the proposed method.

State Estimation and Identification of Nonlinear Systems by Hermitian Expansion of Probability Distributions (Hermite전개법에 의한 비선형계의 상태추정 및 동정에 관한 연구)

  • Kyong Ki Kim
    • 전기의세계
    • /
    • v.22 no.3
    • /
    • pp.49-62
    • /
    • 1973
  • An algorithm for the state estimation and identification of multivariable nonlinear systems with noisy nonlinear observation has been investigated on the basis of the multidimensional Hermitian expansion for the a posteriori probability densities of the predicted observation, the predicted state and the observation conditioned by the state. A new approach for construction of this sequential nonlinear estimator, retaining up to the second order term of the observation error, has been developed, along with the approximation of nonlinear system functions, truncating at the second term. The estimation of the unknown parameters has been established by extending the state estimation technique, regarding the parameters as another state variables. The results of investigation indicate the feasibility of the schemes presented in this paper.

  • PDF

Investigation of mean wind pressures on 'E' plan shaped tall building

  • Bhattacharyya, Biswarup;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.99-114
    • /
    • 2018
  • Due to shortage of land and architectural aesthetics, sometimes the buildings are constructed as unconventional in plan. The wind force acts differently according to the plan shape of the building. So, it is of utter importance to study wind force or, more specifically wind pressure on an unconventional plan shaped tall building. To address this issue, this paper demonstrates a comprehensive study on mean pressure coefficient of 'E' plan shaped tall building. This study has been carried out experimentally and numerically by wind tunnel test and computational fluid dynamics (CFD) simulation respectively. Mean wind pressures on all the faces of the building are predicted using wind tunnel test and CFD simulation varying wind incidence angles from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. The accuracy of the numerically predicted results are measured by comparing results predicted by CFD with experimental results and it seems to have a good agreement with wind tunnel results. Besides wind pressures, wind flow patterns are also obtained by CFD for all the wind incidence angles. These flow patterns predict the behavior of pressure variation on the different faces of the building. For better comparison of the results, pressure contours on all the faces are also predicted by both the methods. Finally, polynomial expressions as the sine and cosine function of wind angle are proposed for obtaining mean wind pressure coefficient on all the faces using Fourier series expansion. The accuracy of the fitted expansions are measured by sum square error, $R^2$ value and root mean square error.

Closed Form Expression of Cutting Forces and Tool Deflection in End Milling Using Fourier Series (푸리에 급수를 이용한 엔드밀링 절삭력 및 공구변형 표현)

  • Ryu, Shi-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.76-83
    • /
    • 2006
  • Machining accuracy is closely related with tool deflection induced by cutting forces. In this research, cutting forces and tool deflection in end milling are expressed as a closed form of tool rotational angle and cutting conditions. The discrete cutting fores caused by periodic tool entry and exit are represented as a continuous function using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping part are considered together far cutting forces and tool deflection estimation. Compared with numerical methods, the presented method has advantages in prediction time reduction and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the form accuracy is easily predicted from tool deflection curve.

Representation of cutting forces and tool deflection in end milling using Fourier series (엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현)

  • Ryu S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

An Improved Error Expansion Reversible Watermarking for 3D Mesh Model

  • Dong, Ke-Ming;Kim, Hyoung-Joong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.979-981
    • /
    • 2011
  • In this paper, a new scheme to improve both the capacity and distortion performance for error-prediction method is proposed. For every triangle mesh, two vertices were selected to predict the rest vertex, and the prediction error distances which were vertical and paralleled to the edge between these two vertices would be used to embed two units of secret date amount. We sort the meshes before embedding according to predicted error in order to decrease the distortion. Experiment results show that our approach increase the capacity and decrease the distortion as compared to the original algorithm.

Numerical Investigations in Choosing the Number of Principal Components in Principal Component Regression - CASE II

  • Shin, Jae-Kyoung;Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.163-172
    • /
    • 1999
  • We propose a cross-validatory method for the choice of the number of principal components in principal component regression based on the magnitudes of correlations with y. There are two different manners in choosing principal components, one is the order of eigenvalues(Shin and Moon, 1997) and the other is that of correlations with y. We apply our method to various data sets and compare results of those two methods.

  • PDF