• Title/Summary/Keyword: precursors

Search Result 1,439, Processing Time 0.036 seconds

Enhanced Densification in Tl-1223/Ag Tapes Prepared Using Pretreated Precursors

  • Jeong, D.Y;Baek, S.M.;Kim, B.J.;Kim, Y.C.;Park, K.G.
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.198-212
    • /
    • 2002
  • The effects of reacted precursors on phase evolution, microstructure, $J_{c}$ and junctional characteristic of the inter-granular contacts were investigated in Ag-sheathed T1-1223 tapes prepared using three kinds of reacted precursors, and compared to those in the tape prepared using an unreacted precursor The precursors were prepared by heat-treating a mixture of Sr-Ba-Ca-Cu-O, $Tl_2$$O_3$, PbO and $Bi_2$$O_3$ powders at $805^{\circ}C$ (precursor I ), $840^{\circ}C$ (precursor II ) and $905^{\circ}C$(precursor III) for 20 min. Tl-1223 phase content, grain size and J\ulcorner in the tapes appeared to increase in an order of precursors I, II and III Compared to tapes prepared using an unreacted precursor, the tapes prewar ed using precursors II and III revealed reduced pore and impurity densities and an enhanced texture. Also characteristic of inter -granular contacts and fraction of strong-links were improved. The improved properties are attributed to enhanced densification resulting from using the reacted precursors.s.

  • PDF

Bcl-Xl Enhances Resistence to Parkisonian Toxin Mpp+ in Nurr1-Induced Dopamine Neurons

  • Park, Chang-Hwan;Kang, Jin-Sun;Lee, Sang-Hun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.185-185
    • /
    • 2003
  • In-vitro expanded CNS precursors provide a potentially unlimited source of dopamine (DA) neurons for the experimental treatment in Parkinson's disease. An efficient dopaminergic differentiation from CNS precursors in vitro is limited to mesencephalic precursors isolated from early embryonic ages (embryonic day 11.5 (E11.5)-E12.5).(omitted)

  • PDF

Effectiveness Criteria for Methods of Identifying Ionospheric Earthquake Precursors by Parameters of a Sporadic E Layer and Regular F2 Layer

  • Korsunova, Lidiya P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.137-140
    • /
    • 2015
  • The results of the study of ionospheric variations in the summer months of 1998-2002 at an ionospheric station of vertical sounding "Petropavlovsk-Kamchatsky" are presented. Anomalous variations of virtual sporadic-E height (h'Es), Es blanketing frequency (fbEs), and the critical frequency of the ionospheric F2 layer (foF2) (which can be attributed to the possible earthquake precursors) are selected. The high efficiency of the selection of ionospheric earthquake precursors based on the several parameters of Es and F2 layers is shown. The empirical dependence, which reflects the connection between the lead-time of the earthquake moment, the distance to the epicenter from the observation point, and the magnitude of the earthquake are obtained. This empirical dependence is consistent with the results of the detection of earthquake precursors by measuring the physical parameters of the Earth's crust in the same region.

Preparation and Characterization of Europium-doped Gadolinium Oxide Phosphors Using Oxalate Coprecipitation Method

  • Park, In-Yong;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.177-182
    • /
    • 2010
  • To synthesize $Gd_2O_3:Eu^{3+}$ phosphor, gadolinium-europium oxalate precursors were prepared from oxalic acid, NaOH or aqueous ammonia via coprecipitation method. The obtained precursors were heat-treated and then characterized by XRD, SEM and PL. The kinds and amounts of coprecipitant (NaOH or aqueous ammonia) were found to affect the powder morphology and properties of gadolinium-europium oxalate precursors. Two crystalline precursors and one amorphous precursor were synthesized. The nanometer-sized amorphous gadolinium-europium oxalate precursor was first prepared using the oxalate coprecipitation technique. The calcined powders obtained from the amorphous precursor were nearly spherical in shape, and a narrow size distribution was obtained. The NaOH coprecipitant was more effective in the preparation of nanometer-sized spherical powders. A thermal decomposition process was conducted for the three kinds of precursors. The photoluminescence property was also measured as a function of europium content, and concentration quenching occurred for samples with europium concentrations of over 10 mol%.

Tailoring Molecular Precursors for Multicomponent Oxides

  • Hubert-Pfalzgraf, Liliane G.
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.370-379
    • /
    • 2000
  • Simple ways to build up mixed-metal molecules which can act as potential single-source precursors to multimetallic oxides are reviewed. Emphasis is given to Lewis acid-base reactions between metal alkoxides M(OR)/sub n/, and between metal alkoxides and more accessible oxide precursors, carboxylates M(O₂CR)/sub n/ and β-diketonates M(β-dik)/sub n/. Characterization of the precursors is achieved in the solid state (single crystal X-ray diffraction, FT-IR) and by multinuclear NMR in solution. The reactions proceed toward the formation of aggregates in which the different metals display their usual coordinations numbers, often six for transition metals, as shown. Strategies for fixing the stoichiometry between the metals are developed. The reactivity of the MM species (dissociation, effects of chemical modifiers, of other metallic species, hydrolytic or non-hydrolytic condensation, etc.) will be indicated. Transformations into oxides are illustrated on precursors for titanates or niobates.

  • PDF

Chemical Design of Highly Water-Soluble Ti, Nb and Ta Precursors for Multi-Component Oxides

  • Masato Kakihana;Judith Szanics;Masaru Tada
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.893-896
    • /
    • 1999
  • Novel citric acid based Ti, Nb and Ta precursors that are highly stable in the presence of water were developed. No alkoxides of Ti, Nb and Ta were utilized in the preparation, instead much less moisture-sensitive metallic Ti, NbCl5 and TaCl5 were chosen as starting chemicals for Ti, Nb and Ta, respectively. The feasibility of these chemicals as precursors is demonstrated in the powder synthesis of BaTi4O9, Y3NbO7 and LiTaO3. The water-resistant Ti precursor was employed as a new source of water-soluble Ti in the amorphous citrate method, and phase pure BaTi4O9 in powdered form was successfully synthesized at 800 ?. The Pechini-type polymerizable complex method using the water-resistant Nb and Ta precursors was applied to the synthesis of Y3NbO7 and LiTaO3, and both the powder materials in their pure form were successfully synthesized at reduced tempera-tures, viz. 500-700 ?. The remarkable retardation of hydrolysis of these water-resistant precursors is explained in terms of the partial charge model theory.

Preparation and Thermal Properties of Enaminonitriles-Terminated Reactive Polymer Precursors

  • 박원순;길덕수;공명선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.291-295
    • /
    • 1998
  • Various enaminonitriles-terminated reactive polymer precursors containing rigid aromatic and flexible alkyl units were prepared from the corresponding diamines and 1-chloro-1-phenyl-2,2-dicyanoethene (1). All the enaminonitriles-terminated precursors were characterized by spectroscopies and elemental analysis. They were highly soluble in DMF and NMP, and partially soluble in common organic solvents such as THF and acetone. They showed a large exotherm around 350 ℃ attributable to the thermal polymerization by crosslinking of the dicyanovinyl group. Upon heating the precursors, heat-resistant and insoluble network polymers were obtained. Thermogravimetric analyses of the precursors containing rigid aromatic moiety exhibited thermal stability with a 10% weight loss around 420-480 ℃ and 75-88% residual weight at 500 ℃ under nitrogen.

Low Temperature Synthesis of Forsterite Powders by the Geopolymer Technique (지오폴리머 기술에 의한 포스테라이트 분말의 저온합성)

  • Son, Se-Gu;Lee, Ji-Hyeon;Lee, Sang-Hoon;Kim, Young-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.242-248
    • /
    • 2009
  • Forsterite is a crystalline magnesium silicate with chemical formula $Mg_2SiO_4$, which has extremely low electrical conductivity that makes it an ideal substrate material for electronics. In this study, forsterite precursors were synthesized with magnesium silicate gels from the mixture of magnesium nitrate solution and various sodium silicate solution by the geopolymer technique. Precursors and heattreated powders were characterized by thermogravimetrical differential thermal analyzer(TG-DTA), X-ray diffractometer(XRD), scanning electron microscopy(SEM), Si magic angle spinning nuclear magnetic resonance(MAS-NMR), transmission electron microscopy(TEM). As the result of analysis about the crystallization behavior by DTA, the synthesized precursors were crystallized in the temperature range of $700^{\circ}C$ to $900^{\circ}C$. The XRD results showed that the gel composition began to crystallize at various temperature. Also, it was found that the sodium orthosilicate based precursors(named as 'FO') began to crystallize at above $550^{\circ}C$. The FO peaks were much stronger than sodium silicate solution based precursors(named as 'FW'), sodium metasilicate based precursors(named as 'FM') at $800^{\circ}C$. TEM investigation revealed that the 100nm particle sized sample was obtained from FO by heating up to $800^{\circ}C$.

Quantum Mechanical Simulation for the Analysis, Optimization and Accelerated Development of Precursors and Processes for Atomic Layer Deposition (ALD)

  • Mustard, Thomas Jeffrey Lomax;Kwak, Hyunwook Shaun;Goldberg, Alexander;Gavartin, Jacob;Morisato, Tsuguo;Yoshidome, Daisuke;Halls, Mathew David
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.317-324
    • /
    • 2016
  • Continued miniaturization and increasingly exact requirements for thin film deposition in the semiconductor industry is driving the search for new effective, efficient, selective precursors and processes. The requirements of defect-free, conformal films, and precise thickness control have focused attention on atomic layer deposition (ALD). ALD precursors so far have been developed through a trial-and-error experimental approach, leveraging the expertise and tribal knowledge of individual research groups. Precursors can show significant variation in performance, depending on specific choice of co-reactant, deposition stage, and processing conditions. The chemical design space for reactive thin film precursors is enormous and there is urgent need for the development of computational approaches to help identify new ligand-metal architectures and functional co-reactants that deliver the required surface activity for next-generation thin-film deposition processes. In this paper we discuss quantum mechanical simulation (e.g. density functional theory, DFT) applied to ALD precursor reactivity and state-of-the-art automated screening approaches to assist experimental efforts leading toward optimized precursors for next-generation ALD processes.

Highly-conformal Ru Thin Films by Atomic Layer Deposition Using Novel Zero-valent Ru Metallorganic Precursors and $O_2$ for Nano-scale Devices

  • Kim, Su-Hyeon
    • Electrical & Electronic Materials
    • /
    • v.28 no.2
    • /
    • pp.25-33
    • /
    • 2015
  • Ruthenium (Ru) thin films were grown on thermally-grown $SiO_2$ substrates by atomic layer deposition (ALD) using a sequential supply of four kinds of novel zero-valent Ru precursors, isopropyl-methylbenzene-cyclohexadiene Ru(0) (IMBCHDRu, $C_{16}H_{22}Ru$), ethylbenzen-cyclohexadiene Ru(0) (EBCHDRu, $C_{14}H_{18}Ru$), ethylbenzen-ethyl-cyclohexadiene Ru(0) (EBECHDRu, $C_{16}H_{22}Ru$), and (ethylbenzene)(1,3-butadiene)Ru(0) (EBBDRu, $C_{12}H_{16}Ru$) and molecular oxygen (O2) as a reactant at substrate temperatures ranging from 140 to $350^{\circ}C$. It was shown that little incubation cycles were observed for ALD-Ru processes using these new novel zero-valent Ru precursors, indicating of the improved nucleation as compared to the use of typical higher-valent Ru precursors such as cyclopentadienyl-based Ru (II) or ${\beta}$-diketonate Ru (III) metallorganic precursors. It was also shown that Ru nuclei were formed after very short cycles (only 3 ALD cycles) and the maximum nuclei densities were almost 2 order of magnitude higher than that obtained using higher-valent Ru precursors. The step coverage of ALD-Ru was excellent, around 100% at on a hole-type contact with an ultra-high aspect ratio (~32) and ultra-small trench with an aspect ratio of ~ 4.5 (top-opening diameter: ~ 25 nm). The developed ALD-Ru film was successfully used as a seed layer for Cu electroplating.

  • PDF