• Title/Summary/Keyword: precursor adsorption property

Search Result 7, Processing Time 0.024 seconds

The effect of plamsa treatment on superconformal copper gap-fill

  • Mun, Hak-Gi;Kim, Seon-Il;Park, Yeong-Rok;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.249-249
    • /
    • 2010
  • The effect of forming a passivation layer was investigated in superconformal Cu gap-filling of the nano-scale trench with atomic-layer deposited (ALD)-Ru glue layer. It was discovered that the nucleation and growth of Cu during metal-organic chemical vapor deposition (MOCVD) were affected by hydrogen plasma treatments. Specifically, as the plasma pretreatment time increased, Cu nucleation was suppressed proportionally. XPS and Thermal Desorption Spectroscopy indicated that hydrogen atoms passivate the Ru surface, which leads to suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. For gap-fill property, sub 60-nm ALD Ru trenches without the plasma pretreatment was blocked by overgrown Cu after the Cu deposition. With the plasma pretreatment, superconformal gap filling of the nano-scale trenches was achieved due to the suppression of Cu nucleation near the entrances of the trenches. Even the plasma pretreatment with bottom bias leads to the superconformal gap-filling.

  • PDF

Characteristics of carbon dioxide separation using amine functionalized carbon (아민기 개질 탄소를 이용한 이산화탄소 분리 특성)

  • Cha, Wang Seog;Lim, Byeong Jun;Kim, Jun Su;Lee, Sung Youn;Park, Tae Jun;Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 2021
  • The development of a new sorbent for carbon dioxide depends on several factors, such as fast adsorption/absorption velocity, hydrophobicity, and lower regeneration temperature than commercial sorbent. In this study, aminosilane grafted activated carbon was synthesized to capture CO2. Methyltrimethoxysilane (MTMS) and 3-aminopropyl-triethoxysilane (APTES) were used as the grafting precursor of the amine functional group. The APTES grafting activated carbon showed higher sorption property than MTMS used one. The characteristics of the separation mechanism of carbon dioxide were examined by measuring the adsorption capacity according to temperature and carbon dioxide partial pressure. The absorption capacity of carbon dioxide was similar to amine grafting activated carbon and activated carbon at 25℃, but amine-grafted activated carbon was higher at 75℃. The amine functional group-grafted activated carbon showed higher absorption capacity than activated carbon with a 1% carbon dioxide partial pressure. Aminosilane grafting of activated carbon was chemically absorbed but also showed the characteristics of physical adsorption. The reforming activated carbon with an amine functional group grafted solid absorption/adsorption sorbent would significantly impact the material engineering industry and carbon dioxide adsorption process. The functionalized sorbent is a high-performance composite material. The developed sorbent may have applications in other industrial processes of absorption/adsorption and separation.

Optimization of Synthesis Process for Zeolite 4A Using Statistical Experimental Design (통계적 실험계획법을 이용한 제올라이트 4A 합성 최적화)

  • Yun, Mi Hee;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.286-289
    • /
    • 2017
  • Synthesis of zeolite 4A was carried out to optimize the nanoparticle synthesis process using statistical experimental design method. The zeolite 4A was synthesized by controlling the concentration of the silicon precursor, sodium metasilicate (SMS), and characterized by XRD, SEM and nitrogen adsorption. In particular, the property of zeolite 4A can be determined by XRD analysis. Using the general factor analysis in the design of experiments, we analyzed main effects and interactions according to the reactor, reaction temperature and reaction time. The optimum reaction condition for the synthesis of zeolite 4A crystallinity was using an autoclave for 3 hours at $110^{\circ}C$. Furthermore, the optimal synthesis conditions of zeolite 4A with various crystallinity using Ludox as a silicon precursor were presented of what using both the surface and contour plot.

Mineralogical Properties and Paragenesis of H-smectite (H-스멕타이트의 광물학적 특성과 생성관계)

  • Noh, Jin-Hwan;Hong, Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.377-393
    • /
    • 2010
  • Pumiceous tuffs occurring in the Beomgockri Group are examined applied-mineralogical characteristics and their controling factors to evaluate their potentials as the adsorption-functional mineral resources. The pumiceous tuffs are diagenetically altered to low-grade zeolitcs and bentonites in the Janggi area. Compositional specialty due to the presence of pumice fragments induces the altered tuffs to exhibit the characteristic adsorption property combined with cation exchange capacity, specific surface area, and acidic pH. Unusual lower pH in the adsorption-functional mineral substances is turned out to be originated from the presence of H-smectite having $H^+$ in the interlayer site of the sheet structure. On account of disordered crystallinity resulting from the exchanged $H^+$ in the interlayer site, the smectite commonly forms crenulated edges in the planar crystal form and exhibits characteristic X-ray diffraction patterns showing comparatively lower intensities of basal spacings including (001) peak than conventional Ca-smectite. Based on the interpretation of paragenetic relations and precursor of the H-smectite, a genetic model of the peculiar clay mineral was proposed. The smectite formation may be facilitated resulting from the precipitation of opal-CT at decreasing pH condition caused by the release of H+ during diagenetic alteration of pumice fragments. Because of the acidic smectite, the low-grade mineral resources from the Beomgockri Group may be applicable to the adsorption industry as the raw materials of acid clays and bed-soil.

Nanoparticle의 분산 안정도에 따른 ATR-FTIR 분석법을 이용한 증착소재 흡착특성연구

  • Kim, Jong-Ho;Park, Jae-Seo;shahzad, Rauf;Lee, Chang-Hui;Sin, Jae-Su;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.113-113
    • /
    • 2016
  • 반도체 산업이 발전하고 기술이 향상됨에 따라 미세화되고 복잡한 구조의 소자가 개발되고 있으며, 2차원 소재 등 다양하고 새로운 소재들이 발견 및 연구되고 있다. 새로운 소재 또는 기술을 이용한 고품질 소자를 개발하기 위해서는 우수한 특성(높은 순도, 우수한 분해 및 반응 특성)을 지닌 증착소재의 개발 및 평가가 선행되어야 한다. 기존의 증착소재의 기본 물성을 측정하는 방법인 단순 기상 Fourier transform infrared spectroscopy(FT-IR) 분석법은 실제 공정에서의 증착경향을 대변하기 어렵다는 단점이 있다. 이러한 단점을 보완하기 위해 개조된 attenuated total reflection (ATR) 액세서리를 이용하여 실제 공정에서의 증착경향을 대변하고자 하였다. 본 연구에서는 반도체 증착소재의 분해 및 표면 흡착 특성을 분석하기 위해 ATR-FTIR 분석법을 이용하여 수행하였으며, 분산안정도에 따른 nanoparticle을 ATR의 크리스탈 표면에 분포시켜 hexamethyldisilazane(HMDS) source의 흡착 효율을 향상시키는 연구를 수행하였다. Nanoparticle의 분산안정도를 높이기 위하여 suspension 상태에서 pH, sonication, 분산제를 이용하였으며, nanoparticle을 ATR crystal 표면에 분포하여 분석한 결과, 분산안정도에 따라 HMDS의 흡착효율이 달라짐을 확인하였다.

  • PDF

Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs (화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성)

  • Chang, Han Kwon;Jang, Hee Dong;Kim, Tae-Oh;Kim, Sun Kyung;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.