• 제목/요약/키워드: precision press

검색결과 489건 처리시간 0.025초

Cost-effectiveness dynamics and vibration of soft magnetoelastic plate near rectangular current-carrying conductors

  • AliAsghar Moslemi Beirami;Vadim V. Ponkratov;Amir Ebrahim Akbari Baghal;Barno Abdullaeva;Mohammadali Nasrabadi
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.159-168
    • /
    • 2023
  • Cost-effective high precision hybrid elements are presented in a hierarchical form for dynamic analysis of plates. The costs associated with controlling the vibrations of ferromagnetic plates can be minimized by adequate determination of the amount of electric current and magnetic field. In the present study, the effect of magnetic field and electric current on nonlinear vibrations of ferromagnetic plates is investigated. The general form of Lorentz forces and Maxwell's equations have been considered for the first time to present new relationships for electromagnetic interaction forces with ferromagnetic plates. In order to derive the governing nonlinear differential equations, the theory of third-order shear deformations of three-dimensional plates has been applied along with the von Kármán large deformation strain-displacement relations. Afterward, the nonlinear equations are discretized using the Galerkin method, and the effect of various parameters is investigated. According to the results, electric current and magnetic field have different effects on the equivalent stiffness of ferromagnetic plates. As the electric current increases and the magnetic field decreases, the equivalent stiffness of the plate decreases. This is a phenomenon reported here for the first time. Furthermore, the magnetic field has a more significant effect on the steady-state deflection of the plate compared to the electric current. Increasing the magnetic field and electric current by 10-times results in a reduction of about 350% and an increase of 3.8% in the maximum steady-state deflection, respectively. Furthermore, the nonlinear frequency decreases as time passes, and these changes become more intense as the magnetic field increases.

파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계 (Design of shearing process to reduce die roll in the curved shape part of fine blanking process)

  • 전용준
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

A gene expression programming-based model to predict water inflow into tunnels

  • Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Laith R. Flaih;Abed Alanazi;Abdullah Alqahtani;Shtwai Alsubai;Nabil Ben Kahla;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.65-72
    • /
    • 2024
  • Water ingress poses a common and intricate geological hazard with profound implications for tunnel construction's speed and safety. The project's success hinges significantly on the precision of estimating water inflow during excavation, a critical factor in early-stage decision-making during conception and design. This article introduces an optimized model employing the gene expression programming (GEP) approach to forecast tunnel water inflow. The GEP model was refined by developing an equation that best aligns with predictive outcomes. The equation's outputs were compared with measured data and assessed against practical scenarios to validate its potential applicability in calculating tunnel water input. The optimized GEP model excelled in forecasting tunnel water inflow, outperforming alternative machine learning algorithms like SVR, GPR, DT, and KNN. This positions the GEP model as a leading choice for accurate and superior predictions. A state-of-the-art machine learning-based graphical user interface (GUI) was innovatively crafted for predicting and visualizing tunnel water inflow. This cutting-edge tool leverages ML algorithms, marking a substantial advancement in tunneling prediction technologies, providing accuracy and accessibility in water inflow projections.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

단추에 관한 연구 -19, 20세기를 중심으로- (The Study on the Buttons (centering around 19th-20th Centuries))

  • 이영란
    • 복식
    • /
    • 제22권
    • /
    • pp.263-276
    • /
    • 1994
  • The achievement of notable social reoforms attained during the period of 19th and 20th centuries needlessly speaking remodelded the social environmental into several different patterns such as :1) high industrialization 2) propensity to consume 3) up graded overall social stands. Accordingly the industrial world of the but-tons too established the mess production syhstem by breaking from convention of hand-craft work of 17th century. The raw materials used in the production line on buttons during the 20th century are almost all-kind of materials one can possibly named including cheap plastic which enabled production lines to produce cheaper but higher productivities of the buttons being produced, The design (incused design) used in the 19-20h centuries are : men landscape, sports features, birds, livestocks, bugs, or geomatric features, tec, 1, The classification o f the buttons by materials Techniques shapes colors marking (Incused design) used in the productionof buttons in the England United States of America Laska Italy france Denmark Japan and India are categolizzed as : natural raw materials and syntetical resines. 1) Of the natural raw materials used are : Matal Enamel Iodine Agate, Coral, Green jade(Jasper) Granite, Wood, Ivory, Horn and bone etc. 2) The sythetical resin used in the button in-dustries are : Artificial jewell glass Acrylic material Styroform Celluloid and Nylon etc. 2. The thecnique quoted in producing buttons are hand craft work inlay work precision casting press mosic dye etching, processing, engraving and embossed carving etc. 3. The major designs used in the buttons in -dustries are : Round shape however elliptical column angular and edge shape often used. 4. The colors used are : The multi-colors were highly used than mono-colored materials such as : Adjoining Color and Contrast Color. The highest consideration to be considered in choosing the colors for the buttons are harmonization and matching factor with the garment or dresses to be wore. 5. The major design(incused design) on the buttons are embodiment and the design were also used in order of abstractive-combination abstractive with has offers much surprising. The button industries during the 19th and 20th centuries were not only the determination factors those can judge the value of self-pride of Nation and which were far beyond the in-dustrial arts in those days but also highly refelected and influenced by cultural sense ideology and self-pride of the Nation of those period. The followings are details of the role of the buttons categolized in the order of functional ornamental and symbolical aspects : 1. The functional role : The functional role of the buttons were simply designed for dress how-ever the buttons beyond from this role of function now a days. 2. The ornamental role : The ornamental role of he button beyond from this role of the button were effectuated by : 1) shape materials colors 2) technique locations size and design (incused design) 3) The ramaterials used for buttons shall not be over looked because it is highly depends on the taste sense and combination of harmony with the garment to be wore. 4) The color of the buttons are made well contrasted with the color of garments just as in the case of other artistical area such as matchs with the color of garment of contrast with brigtness of colors contrasted as complementary color and so and so. 5) The technique being adoped are: precision casting press handcraft inlay work etching mosic etc,. Since the buttons are no longer a simple catching devise used to fasten together the different part of the dress but now it has formed own and occupied the independent role in the garment or dresses location can be de-termined and varying depending on the ideas of designers. The size of the buttons has no specific limits, However the variation has widely dependined on the entire circumperence rhythm contrast harmonization of the garments. 3. The symbolical role : Since the button is no longer a just a simple devise for catching and fastening device used fastening together the different part of the garments but now were built a independent area as major part of the Garment and well reflected all kinds of occupations political background cultural as-pect etc. on the buttons. The design of buttons in the western circles are more simplified but they are polished looks and their techniques of manufacturing are comination of both machanis and handcraft. The colors used in the buttons are pretty well harmonized with garment(dress). Almost all kind of materials can be used in the but-tons however materials used in the buttons are : Bone of livestocks ivory, turtle shell are no longer used because the prevention of cruely of animal. On the contraly the level of buttons indus-try of Korea is far to reach and catch up with the level of western circles. It is highly suggested therefore the but-tons industrial field of Republic of Korea shall place and encouragement in producing beter industrial environment of the buttons based on the traditional and cultural aspect of republic of Korea to produce both manufacturing of qulified and best designed and colored buttons.

  • PDF

의미적 표상 및 매개체와 무관한 단순 행동의 주의력 증진 효과 (Action effect: An attentional boost of action regardless of medium and semantics)

  • 김도균;지은희;김민식
    • 인지과학
    • /
    • 제34권3호
    • /
    • pp.153-180
    • /
    • 2023
  • 행동 효과(action effect)란, 특정 자극에 대한 단순한 행동이 이후의 시각 탐색 과제에서 해당 자극의 인지적 처리를 향상시키는 효과를 말한다. 본 연구는 행동을 지시하는 단어의 의미적 표상과 실제로 수행하는 행동의 종류가 행동 효과에 미치는 영향을 알아보고자 시행되었다. 실험 1은 선행 연구의 실험 패러다임을 반복 검증하였다. 참가자는 화면을 통해 제시되는 "출발" 또는 "정지"의 행동 지시어를 보고 뒤이어 나타나는 원형 자극에 대하여 키보드를 이용해 응답하거나(출발 조건) 응답하지 않았다(정지 조건). 다음으로, 참가자는 한쪽으로 기울어진 선분을 찾아 기울어진 방향을 보고하는 시각 탐색 과제를 수행하였다. 이때 표적 자극은 이전에 제시되었던 원형 자극 위에 나타나거나(타당 조건) 다른 자극 위에 나타날 수 있었다(비타당 조건). 시각 탐색 과제의 반응 속도를 분석한 결과, 선행연구와 동일한 행동 효과(행동 조건과 타당도 조건의 상호작용)를 관찰할 수 있었다. 실험 2에서는 반응 도구 및 물리적 행동의 종류가 상이한 경우에도 행동 효과가 유지되는지 알아보고자 진행되었다. 참가자는 제시되는 행동 지시어에 대하여 키보드를 이용해 응답하였으나, 시각 탐색 과제에서는 조이스틱 방향을 조정함으로써 반응을 보고하였다. 그 결과, 타당도에 따른 주효과 및 행동 효과 모두 유의한 것으로 나타났다. 단어의 의미적 표상이 행동 효과에 미치는 영향을 알아보기 위하여, 실험 3에서는 두 행동 조건 모두 반응을 하지 않게 하였고, 실험 4에서는 두 행동조건 모두 각기 다른 키를 사용하여 반응하게 하였다. 그 결과, 두 실험 모두 타당도에 따른 주효과만 유의미했으며 행동 효과는 관측되지 않았다. 실험 3과 실험 4의 결과를 비교 분석한 결과, 실험 유형과 타당도 간의 상호작용이 관찰되었다. 본 연구는 행동 지시어의 의미적 표상만으로는 행동 효과를 야기할 수 없으며, 이중과제 패러다임에서 물리적 반응의 도구 및 종류와 상관없이 행동 효과가 관찰될 수 있다는 점을 시사한다.

The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete

  • Ahmadreza Khodayari;Danial Fakhri;Adil Hussein, Mohammed;Ibrahim Albaijan;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Ahmed Babeker Elhag;Shima Rashidi
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.163-177
    • /
    • 2023
  • Complex and intricate preparation techniques, the imperative for utmost precision and sensitivity in instrumentation, premature sample failure, and fragile specimens collectively contribute to the arduous task of measuring the fracture toughness of concrete in the laboratory. The objective of this research is to introduce and refine an equation based on the gene expression programming (GEP) method to calculate the fracture toughness of reinforced concrete, thereby minimizing the need for costly and time-consuming laboratory experiments. To accomplish this, various types of reinforced concrete, each incorporating distinct ratios of fibers and additives, were subjected to diverse loading angles relative to the initial crack (α) in order to ascertain the effective fracture toughness (Keff) of 660 samples utilizing the central straight notched Brazilian disc (CSNBD) test. Within the datasets, six pivotal input factors influencing the Keff of concrete, namely sample type (ST), diameter (D), thickness (t), length (L), force (F), and α, were taken into account. The ST and α parameters represent crucial inputs in the model presented in this study, marking the first instance that their influence has been examined via the CSNBD test. Of the 660 datasets, 460 were utilized for training purposes, while 100 each were allotted for testing and validation of the model. The GEP model was fine-tuned based on the training datasets, and its efficacy was evaluated using the separate test and validation datasets. In subsequent stages, the GEP model was optimized, yielding the most robust models. Ultimately, an equation was derived by averaging the most exemplary models, providing a means to predict the Keff parameter. This averaged equation exhibited exceptional proficiency in predicting the Keff of concrete. The significance of this work lies in the possibility of obtaining the Keff parameter without investing copious amounts of time and resources into the CSNBD test, simply by inputting the relevant parameters into the equation derived for diverse samples of reinforced concrete subject to varied loading angles.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.