• 제목/요약/키워드: precision orbit determination

검색결과 63건 처리시간 0.035초

Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

  • Lee, Eunji;Park, Sang-Young;Shin, Bumjoon;Cho, Sungki;Choi, Eun-Jung;Jo, Junghyun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권1호
    • /
    • pp.19-30
    • /
    • 2017
  • The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.

Precision Orbit Determination of the SAC-C Satellite Using the GPS Dual Frequency Measurement

  • Yoon, Jae-Cheol;Im, Jeong-Heum;Moon, Hong-Youl;Lee, Sang-Ryool;Lee, Byoung-Sun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.48-48
    • /
    • 2003
  • A precision orbit determination (POD) system of low Earth orbiter using the GPS dual frequency measurements has been developed. It is an option of KOMPSAT-2 POD process system. In this research, the orbit determination using the real dual frequency carrier phase measurements of the SAC-C satellite was conducted to verify KOMPSAT-2 POD system reliability. The SAC-C satellite is an international cooperative mission between NASA, the Argentine Commission on Space Activities (CONAE), Centre National d'Etudes Spatiales (CNES or the French Space Agency), Instituto Nacional De Pesquisas Espaciais (Brazilian Space Agency), Danish Space Research Institute, and Agenzia Spaziale Italiana (Italian Space Agency). The SAC-C was launched at November 21, 2000. The altitude of SAC-C is 702 km and it carries a TurboRogue III GPS and four high gain antennas developed by the JPL. The receiver is able to generate the dual frequency code and carrier phase data. Double-differenced carrier phase measurements were formed using 25 IGS stations. The data were sampled at 30 seconds interval. Fully dynamic approach was adopted for POD. The POD results were compared with those of JPL using GOA n software. The comparison verifies that deci-meter level 3D position accuracy of low Earth orbiting satellite could be achieved. The POD system has been developed successfully.

  • PDF

Orbit Determination of High-Earth-Orbit Satellites by Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.271-280
    • /
    • 2017
  • This study presents the application of satellite laser ranging (SLR) to orbit determination (OD) of high-Earth-orbit (HEO) satellites. Two HEO satellites are considered: the Quasi-Zenith Satellite-1 (QZS-1), a Japanese elliptical-inclinedgeosynchronous-orbit (EIGSO) satellite, and the Compass-G1, a Chinese geostationary-orbit (GEO) satellite. One week of normal point (NP) data were collected for each satellite to perform the OD based on the batch least-square process. Five SLR tracking stations successfully obtained 374 NPs for QZS-1 in eight days, whereas only two ground tracking stations could track Compass-G1, yielding 68 NPs in ten days. Two types of station bias estimation and a station data weighting strategy were utilized for the OD of QZS-1. The post-fit root-mean-square (RMS) residuals of the two week-long arcs were 11.98 cm and 10.77 cm when estimating the biases once in an arc (MBIAS). These residuals were decreased significantly to 2.40 cm and 3.60 cm by estimating the biases every pass (PBIAS). Then, the resultant OD precision was evaluated by the orbit overlap method, yielding three-dimensional errors of 55.013 m with MBIAS and 1.962 m with PBIAS for the overlap period of six days. For the OD of Compass-G1, no station weighting strategy was applied, and only MBIAS was utilized due to the lack of NPs. The post-fit RMS residuals of OD were 8.81 cm and 12.00 cm with 49 NPs and 47 NPs, respectively, and the corresponding threedimensional orbit overlap error for four days was 160.564 m. These results indicate that the amount of SLR tracking data is critical for obtaining precise OD of HEO satellites using SLR because additional parameters, such as station bias, are available for estimation with sufficient tracking data. Furthermore, the stand-alone SLR-based orbit solution is consistently attainable for HEO satellites if a target satellite is continuously trackable for a specific period.

준 실시간 정밀 위성궤도결정을 위한 이론적 고찰 (A Preliminary Study of Near Real-time Precision Satellite Orbit Determination)

  • 배태석
    • 한국측량학회지
    • /
    • 제27권1호
    • /
    • pp.693-700
    • /
    • 2009
  • 장기선 네트워크 RTK(Real-Time Kinematic) 측량, 정밀단독측위(precise point positioning) 및 전리층/대류권 지연 모니터링등 GPS를 이용한 실시간 데이터 처리를 위해서는 IGS(International GNSS Service)에서 제공하는 정밀궤도 수준의 정확도가 시간지연 없이 확보되어야 한다. 본 연구는 준 실시간 위성궤도결정을 위한 선행연구로서 일반적인 위성궤도 결정 방법, 특히 동역학적 방법에 대한 이론적 고찰과 가속도 적분을 위한 지구기준/관성좌표계 변환 방법에 대한 테스트를 수행하였다. IAU 1976/1980 세차/장동모델은 IAU 2000A 모델과 0.05mas 수준의 허용범위 내 차이를 보였다. IAU 2000A 모델은 기본적으로 복잡한 장동모델로 인해 변환행렬 계산에 많은 시간이 소요된다. IAU 2000A 모델에 기존 변환 방법을 사용하는 경우가 NRO(non-rotating origin) 방법에 비해 2배정도 빠른 결과를 보인 반면 회전행렬의 실질적인 차이는 없는 것으로 나타났다.

선형 CCD카메라 영상의 정밀 기하학적 보정 (Precision correction of satellite-based linear pushbroom-type CCD camera images)

  • 신동석;이영란;이흥규
    • 대한원격탐사학회지
    • /
    • 제14권2호
    • /
    • pp.137-148
    • /
    • 1998
  • 본 논문에서 고해상도 위성영상의 정밀 기하학적 보정에 대하여 기술한다. 일반적으로 GCP로부터 영상과 기준 지도 사이의 다하식을 유도하는 polynomial warping 방법인 경우 원하는 정확도를 얻기위해 영상 전체를 골고루 분포된 많은 GCP를 요구하게 된다. 하지만 제안되는 알고리즘은 위성-센서-궤도-지구 간의 기하학적 모델을 바탕으로 2-3개의 GCP만으로도 전체 영상을 매우 정확히 보정할 수 있다. 개발된 알고리즘은 GCP를 순차적으로 사용하여 부정확한 초기 궤도 및 자세 정보를 정밀하게 추정하고 이러한 추정은 Kalman filter를 사용하여 이루어진다. 이 알고리즘은 현재 우리별 3호의 전처리 소프트웨어에 통합되어 구현되어 있으며 앞으로 우리별 3호 영상뿐 아니라 다목적실용위성 영상의 정밀 기하학적 보정에 사용될 예정이다.

YLPODS performance test using SLR data

  • Kim, Young-Rok;Park, Sang-Young;Choi, Kyu-Hong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.26.2-26.2
    • /
    • 2008
  • YLPODS (Yonsei Laser-ranging Precise Orbit Determination System) is POD system using SLR (Satellite Laser Ranging) data. YLPODS is developed for two main purposes. The first purpose is to verify the result of POD using GPS data. The second purpose is to perform POD using only SLR data. In this study, YLPODS performance test is presented for checking the reliability of POD using only SLR data. To perform POD, the information of CHAMP and TOPEX mission is applied and SLR NP (Normal Point) data is used. The test is performed by checking both range precision and 3D accuracy (radial, along, cross direction). To confirm of 3D accuracy, CHAMP GENESIS orbit and TOPEX JPL orbit of NASA are used.

  • PDF

Real-Time Determination of Relative Position Between Satellites Using Laser Ranging

  • Jung, Shinwon;Park, Sang-Young;Park, Han-Earl;Park, Chan-Deok;Kim, Seung-Woo;Jang, Yoon-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.351-362
    • /
    • 2012
  • We made a study on real-time determination method for relative position using the laser-measured distance data between satellites. We numerically performed the determination of relative position in accordance with extended Kalman filter algorithm using the vectors obtained through nonlinear equation of relative motion, laser simulator for distance measurement, and attitude determination of chief satellite. Because the spherical parameters of relative distance and direction are used, there occur some changes in precision depending on changes in relative distance when determining the relative position. As a result of simulation, it was possible to determine the relative position with several millimeter-level errors at a distance of 10 km, and sub-millimeter level errors at a distance of 1 km. In addition, we performed the determination of relative position assuming the case that global positioning system data was not received for long hours to see the impact of determination of chief satellite orbit on the determination of relative position. The determination of precise relative position at a long distance carried out in this study can be used for scientific mission using the satellite formation flying.