• 제목/요약/키워드: precision motion control

검색결과 585건 처리시간 0.028초

수평회전형 도립진자의 제어 및 실시간 해석 (The Control and the Real-time Analysis of a Horizontally Rotating Inverted Pendulum)

  • 김효중;김헌진;강철구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.341-345
    • /
    • 1996
  • This paper presents the dynamics and the teal-time control of a horizontally rotating inverted pendulum. The dynamic equations representing three degrees of freedom rigid body motion of the pendulum are derived, and the state feedback controller is applied to the motion control of the pendulum. A 32 bit counter board with 16 bit hardware communication ability is developed to improve the real-time control performance and is applied to a horizontally rotating inverted pendulum. The simulation and experimental studies are conducted to evaluate the performance of the developed pendulum system and the timing in the real-time control is analyzed.

  • PDF

모델실험에 의한 객실 운동의 능동제어 연구 (An Experimental Study on the Active Control of the Motion of Ship Cabin)

  • 배종국;이재원;주해호;신찬배
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.106-110
    • /
    • 2002
  • A need fer stable and comfortable cabins in the high-speed passenger ships has increased. For active control of the motion of the ship cabin, a few control algorithms have been applied to the three dimensional real models in the vibration basin. Experimental results show that the feedforward neural network with a linear feedback controller is one of the promising control algorithms for this active control.

고층건물 시공자동화를 위한 다중 클라이밍 유압로봇의 운동 동기제어 (Synchronous Motion Control of Multi-Climbing Hydraulic Robots for High-Rise Building Construction Automation)

  • 홍윤석;장효환
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.103-111
    • /
    • 2009
  • Multi-climbing hydraulic robots are used to lift construction factory (CF) synchronously for applications in the automation of a high-rise building construction. In this study, synchronous motion controller is proposed for the hydraulic robots, whose strategy is not only to make each robot follow the reference path basically by sliding-mode control, but also to synchronize motions of two adjacent cent robots consecutively by cross-coupled control technique. Simulations are performed by using SIMULINK for a system similar to a practical application that includes unbalance in CF and wind disturbance. The results show that the proposed controller significantly reduces synchronous errors, compared to the individual controller for each hydraulic robot.

3-Axis Gyro Sensor based on Servo Motion Control 시스템 개발 (3-Axis Gyro Sensor based on Servo Motion Control System)

  • ;이원부;박수홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.725-727
    • /
    • 2010
  • 선박의 운동을 시뮬레이터 하기 위해서는 Pitch, Roll, Yaw의 세가지 선박 운동 요소를 시뮬레이터 할 수 있어야 한다. 이를 위해 선박의 운동을 시뮬레이터 할 수 있는 6축의 자유도를 가지는 모션 시뮬레이터를 설계 개발 하였다. Gyro Sensor based Servo Motion Control 알고리즘은 선박의 6자유도운동을 분석하여 그에 대응 할 수 있는 Motion Control 동요안정화 제어장치를 개발하였다.

  • PDF

DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발 (Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

ER 클러치 및 브레이크 시스템을 이용한 세탁기 운동 제어 (Motion Control of Washing Machine Using ER Clutch & Brake Systems)

  • 김준호;최승복;정재천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.546-549
    • /
    • 1995
  • This paper presents a control of washing machine using ER clutch and brake actuators. After analyzing field- dependent torque of the actuators on the basis of Bingham model of the ER fluid, two sets of cylindrical ER clutch and brake are manufactured. The governing equation of motion for washing and dehydrating are derived by considering actuators' dynamics. Subsequently, PID controllers are designed to achieve desired rotational motions and tracking control results are provided to demonstrate the effectiveness of the proposed method.

  • PDF

전자기력 제어를 이용한 6 자유도 초정밀 스테이지 (Six D.O.F Ultra Fine Stage using Electromagnetic Force Control)

  • 정광석;백윤수
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.158-164
    • /
    • 2000
  • In recent year, desire and request fer micro automation are growing rapidly covering the whole range of the industry. This has been caused mainly by request of more accurate manufacturing process due to a higher density of integrated circuits in semiconductor industry. This paper presents a six d.o.f fine motion stage using magnetic levitation technique, which is one of actuating techniques that have the potential for achieving such a micro motion. There is no limit in motion resolution theoretically that the magnetically levitated part over a fixed stator can realize. In addition, it Is possible to manipulate the position and the force of the moving part at the same time. Then, the magnetic levitation technique is chosen into the actuating method. However, we discuss issues of design, kinematics, dynamics, and control of the proposed system. And a few experimental results fur step input are given.

  • PDF

바이패드 로봇의 안정적인 거동을 위한 제어 (Biped Robot Control for Stable Walking)

  • 김경대;박종형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF