• Title/Summary/Keyword: precision motion control

Search Result 585, Processing Time 0.02 seconds

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

Photo Retrieval System using Kinect Sensor in Smart TV Environment (스마트 TV 환경에서 키넥트 센서를 이용한 사진 검색 시스템)

  • Choi, Ju Choel
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.255-261
    • /
    • 2014
  • Advances of digital device technology such as digital cameras, smart phones and tablets, provide convenience way for people to take pictures during his/her life. Photo data is being spread rapidly throughout the social network, causing the excessive amount of data available on the internet. Photo retrieval is categorized into three types, which are: keyword-based search, example-based search, visualize query-based search. The commonly used multimedia search methods which are implemented on Smart TV are adapting the previous methods that were optimized for PC environment. That causes some features of the method becoming irrelevant to be implemented on Smart TV. This paper proposes a novel Visual Query-based Photo Retrieval Method in Smart TV Environment using a motion sensing input device known as Kinect Sensor. We detected hand gestures using kinect sensor and used the information to mimic the control function of a mouse. The average precision and recall of the proposed system are 81% and 80%, respectively, with threshold value was set to 0.7.

Design of C-shape Sharp Turn Trajectory using Neural Networks for Fish Robot (신경회로망을 사용한 물고기 로봇의 빠른 방향 전환 궤적 설계)

  • Park, Hee-Moon;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.510-518
    • /
    • 2014
  • In this study, in order to improve and optimize the performance of the turning mechanism for a fish robot in the fluid, we propose the tail joint trajectories using neural networks to mimic the CST(C-shape Sharp Turn) patterns of a real fish which is optimized in the natural environment. In order to mimic the CST patterns of a fish, we convert the sequential recording CST patterns into the coordinate data, and change the numerical coordinate data into a functions. We change the motion functions to the relative joint angles which is adapted to suit robot's shape and data. However, these relative joint trajectories obtained by the sequential recording of the carp have low-precision. It is difficult to apply to the control of a fish robot. Therefore, the relative joint trajectories are interpolated using neural networks with superior generalization ability and applied to the fish robot. we have found that the proposed method using neural networks is superior to ones using high-order polynomial equation through the computer simulations.

A Study of wear and Matching of Diesel Engine Exhaust Valve and Seat Insert Depending on Valve Materials (디젤엔진 배기밸브와 시트 인서트의 밸브 재질에 따른 마모 및 매칭성 연구)

  • Kim, Yang-Soo;Chun, Keyoung-Jin;Hong, Jae-Soo;Chung, Dong-Teak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2008
  • The wear on engine valve and seat insert is one of the most important factors affecting engine performance. The engine valve and seat insert must be able to withstand the severe environment that is created by: high temperature exhaust gases generated while the engine is running, rapid movement of the valve spring, high pressure generated in the explosive process. In order to study such problems, a simulator has been developed to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focused on the test of various degrees of wear on four different exhaust valve materials such as HRV40, HRV40-FNV (face nitrided valve), STL #32, STL #6,. Throughout all tests performed in this study, the outer surface temperature of the seat insert was controlled at $350^{\circ}C$, the cycle number was $4.0{\times}10^6$, the test load was 6860 N, the fuel was LPG the test speed was 20 Hz (2400 RPM) and the seat insert material was HVS1-2. The mean (standard deviation) maximum roughness of the exhaust valve and seat insert was $25.44\;(3.16)\;{\mu}m$ and $27.53\;(3.60)\;{\mu}m$ at the HRV40, $21.58\;(2.38)\;{\mu}m$ and $25.94\;(3.07)\;{\mu}m$ at the HRV40-FNV, $36.73\;(8.98)\;{\mu}m$ and $61.38\;(7.84)\;{\mu}m$ at the STL #32, $73.64\;(23.80)\;{\mu}m$ and $60.80\;(13.49)\;{\mu}m$ at the STL #6, respectively. It was discovered that the maximum roughness of exhaust valve was lower as the high temperature hardness of the valve material was higher under the same test conditions such as temperature, test speed, cycle number, test load and seat insert material. The set of the HRV40-FNV exhaust valve and the HVS1-2 seat insert showed the best wear resistance.

Development of a Load Measurement System for Vehicles using Tire Pressure System Technology (타이어 공기압 시스템 기술을 사용한 차량의 적재중량 측정 시스템 개발)

  • Park, Jae-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires. The proposed technique consists of four processes: noise correction by load and vibration, gas flow correction, data mixer and weight conversion. Noise correction by load and vibration eliminates noise that increases the tire's internal pressure due to external shocks and vibrations produced by the vehicle while it is in motion. In the gas flow correction process, the noise of the internal pressure of the tire is increased due to the temperature rise of the ground with respect to the data obtained through the noise correction process due to the load and vibration. In the data mixer process, the load and pressure on the tolerances the empty, median and the full load are classified according to the change in pressure of the tire that is delivered perpendicular to the tire in the event of cargo. In the weight conversion process, weight is expressed by weight through weight conversion algorithms using noise correction results by load and vibration and gas flow correction. The weight conversion algorithm calculates the weight conversion factor, which is the slope of the linear function with respect to the load and pressure change, and converts the weight. In order to evaluate the accuracy of the loading weight measurement system of the vehicle using the tire pneumatic system technique proposed in this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires.. Noise correction results by load and vibration and gas flow data correction results showed reliable results. In addition, repeated weight precision test showed better weight accuracy than the standard value of 90% of domestic companies.