• Title/Summary/Keyword: precision motion control

Search Result 585, Processing Time 0.037 seconds

Development of the Position Control Algorithm for Nonlinear Overhead Crane Systems (비선형 천장 크레인시스템의 위치제어 알고리즘 개발)

  • 이종규;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.142-147
    • /
    • 2000
  • An overhead crane system which transports an object by girder motion, trolley motion, and hoist motion becomes a nonlinear system because the length of a rope changes. To develope the position control algorithm for the nonlinear crane systems, we apply a nonlinear optimal control method which uses forward and backward difference methods and obtain optimal inputs. This method is suitable for the overhead crane system which is characterized by the differential equation of higher degree and swing motion. From the results of computer simulation, it is founded that the position of the overhead crane system is controlled, and the swing of the object is suppressed.

  • PDF

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

Development of Sorting Machine for Photo Diode and Improvement of Sorting Precision by using Machine Vision (광 다이오드 분류장치 및 비젼을 이용한 정밀도 향상)

  • Ryuh B.S.;Park S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.153-154
    • /
    • 2006
  • Development of sorting machine for photo diode and its control system is addressed. The sorting machine for optical communication device requires high positional precision because the alignment is one of the most important point in the sorting process. This sorting method describes how to detect the target chip's angle and position from the wafer. The machine vision system is used for the feedback control. This sorting machine is implemented by motion controller, machine vision and various solenoid valve and is interfaced with RS-232c, GPIB and PCI communication. This system gets the position accuracy within $1{\mu}m$ with our experiments.

  • PDF

Mathematical modeling and experimental verification far Precision Positioning Control of VCM (보이스 코일 모터의 정밀위치 제어를 위한 수학 모델링 및 검증)

  • Hwang J.D.;Kim J.H.;Kwak Y.K.;Kim S.H.;Ahan J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.375-378
    • /
    • 2005
  • Voice Coil Motor is used linear motion actuator system that require precision positioning control. In order to control precision positioning of voice coil motor, Mathematical model of voice coil motor is needed. Mathematical model is obtained by combining voice coil motor's equation of motion with the equation of circuit and characteristic of voice coil motor. The induced model can predict output displacement according to duty ratio and amplitude. The model is verified by experimental test. Simulated results have tracking errors of less than 10 percent of experimental results.

  • PDF

A Precision Micro-Positioning System by Using Hinge Mechanism

  • Choi, Hyeun-Seok;Lee, Hak-Joon;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1344-1348
    • /
    • 2003
  • A precision micro-positioning system with a high displacement resolution and wide motion range has been required for industrialized applications in variety fields. This paper discusses the design of a precision micro-rotation stage with flexure hinges. Proposed system is applied to grinding machine for micro parts. Rotational motion is generated with this system. For this systems having a full rotation motion with high precision, a dual servo system with a coarse stage and a fine stage is proposed.

  • PDF

A Study on Kinematic Analysis of Feeding Control Mechanism of a Lock Stitch Sewing Machine (본봉용 재봉기의 이송조절기구의 기구 해석에 관한 연구)

  • 신대영;전경진;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.48-54
    • /
    • 1998
  • In sewing, fabrics is fed by an elliptic motion of the feed dog. The feeding control mechanism controls an elliptic motion of the feed dog, finally, controls stitch spacings and feeding directions of fabrics. This study discusses the feeding control mechanism of an industrial lock stitch sewing machine, which is a good example to study a machine kinematics. This study makes mathematical expressions of machine's motion in the feeding control mechanism. Thus, the motions of this mechanism are characterized, which will be used for kinematic analysis of the feed dog later. Also, the above mathematical expressions may be a basis for the new design of the feeding control mechanism and may be applied to development of the similar feeding control mechanism of other type sewing machine.

  • PDF

능동제어모세관을 이용한 유정압테이블의 운동정도 향상

  • 송영찬;박천홍;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.250-256
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clarance of table is actively controlled corresponding to the amount of error with the nariable capillary,anmed as ACC. In previous paper,through the basic test, it was confirmed that by the use of ACC,the error motion within 2.7 .mu.m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the freqency bandwidth of 5.5Hz structurally. In this paper,we performed practital compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy,iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error,the linear and angular motion error are improved upto 0.25 .mu.m and 0.4arcsec,which are about 1/10 and 1/3 of the non-compensated motion errors respectively.