• Title/Summary/Keyword: precise positioning

Search Result 156, Processing Time 0.189 seconds

Performance Analysis of GPS/BDS Integrated Precise Positioning System Considering Visibility in Urban Environments

  • Noh, Jae Hee;Lee, Sun Yong;Lim, Deok Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 2019
  • In recent years, Intelligent Transport Systems (ITS) and Autonomous Vehicle Technology have actively studied around the world. In order to achieve the purpose of Advanced Driver Assistance System (ADAS) and Autonomous Vehicle Technology, it must be obtained accurate and reliable positioning. However, the problem of positioning in the urban area is a low position accuracy caused by the reduction of the number of visible satellites due to high buildings. In this paper, we analyzed the availability of precise positioning system in urban area are using GPS/BDS integrated system. For this study, GPS and BDS satellite signals were collected using two low-cost receivers in the open sky and a designed software based platform for precise positioning performance analysis. And we analyzed the precise positioning performance by changing the mask angle considering the urban area. From the results, it can be confirmed that the performance of precise positioning of GPS only and BDS only decrease in the environment where mask angle is $40^{\circ}$ to $45^{\circ}$, however, GPS/BDS integrated system maintains high performance of precise positioning.

Performance Analysis of Least-Squares Estimation and LAMBDA Method for GPS Precise Positioning using Carrier Phase (GPS 반송파 위상을 이용한 정밀 측위의 최소자승법과 LAMBDA기법의 성능분석)

  • 박헌준;원종훈;고선준;이자성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.146-146
    • /
    • 2000
  • This paper presents field test results of the GPS precise positioning using carrier phase observable. The Least-squares AMBiguity Decorrelation Adjustment(LAMBDA) method is implemented to resolve integer ambiguity problem for two epoch Ll carrier phase measurement data. Field test results show that the GPS precise positioning of cm-level accuracy is obtainable with conventional low cost, single frequency C/A code GPS receivers.

  • PDF

Residual Vibration Reduction of Precise Positioning Stage Using Virtual-Mode Based Input Shapers (가상모드 입력성형기를 이용한 위치결정 스테이지 잔류진동 저감)

  • Seo, Yong-Gyu;Jang, Joon-Won;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.255-260
    • /
    • 2009
  • This paper presents an experimental result of virtual mode input shaping for positioning stage. Input shaping is liable to increase the rise time of the system, which often degrades the performance of system. The virtual mode input, shaping is an input shaper design method to improve this problem. Experiments are performed with a precise positioning stage with a flexible beam of which natural frequency is adjustable. The experimental results show that the virtual-mode shaper is useful to reduce the rise time as well as the residual vibration of precise positioning stages.

  • PDF

Network Configuration Design of GNSS Receiving Station for Optimizing Performance of Precise Positioning (정밀 위치결정 성능 최적화를 위한 위성항법 수신국 네트워크 구성)

  • Son, Minhyuk;Kim, Geo-Heon;Lee, Eunsung;Heo, Moon-Beam
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, requirements of GNSS receiver station installation are derived for optimizing the performance of network based GNSS precise positioning by concern of international organization(IGS, NGS) recommendation. Also a analysis method of network based GNSS precise positioning is suggested in order to evaluate the availability depending on various network configurations. To evaluate network candidates, a performance evaluation method is proposed for positioning of users according to a geometric configuration and the baseline distance. After the proposed method is used to Ochang region that is a the test area 6 network candidates are derived and the performance of positioning was analyzed. Finally, Ansung, Gongju, Eumsung, Boeun network configuration was selected as the best positioning performance. An optimal Receiving station network was selected using the proposed method.

A Study on Precise Positioning with Doppler Measurements for Ground Transportation System (도플러 측정치를 이용한 육상교통 환경에 적합한 정밀 측위 기법 연구)

  • Lee, Byung-Hyun;Jee, Gyu-In
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.632-639
    • /
    • 2010
  • Ground Transportation is one of the most required field that users need positioning information Especially, more precise position can make smart traffic management possible and bring convenience to users. By advanced wireless network, cars can receive the GPS information of reference station in any tim e and any where. Thus land vehicles are possible to process precise positioning. In general, for precise positioning code and phase measurements are used. But receivers provide not only code and phase measurements but also doppler measurements and Doppler is direct measurement of velocity. In this paper, because velocity is very important information required in Ground Transportation, precise positioning for Ground Transportation is studied. For precise positioning RTK(Real-Time Kinematic) was used and double differenced doppler measurements were added, As a Result, positioning error by multipath and cycle slip was soften. However there still remained Positioning error. Thus smoothing technique using doppler measurement in position domain is used for softening positioning error.

National-Wide NETPPI-LT Cluster Design using CORS (상시기준국을 이용한 정밀위치결정 인프라 클러스터 전국단위 설계)

  • Shin, Miri;Ahn, Jongsun;Son, Eunseong;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.577-584
    • /
    • 2018
  • GNSS based transport infrastructure cluster is to broadcast satellite navigation correction information and integrity information capable of precise positioning for land transport users. This makes it possible to do lane-level positioning reliably. However, in order to provide the lane-level positioning and correction information service nationwide, new station sites selection and to build GNSS stations have a heavy cost and a burden for a considerable period of time. In this paper, we propose the cluster design criteria and national-wide network-based precise positioning for land transportation (NETPPI-LT) cluster design for a cluster-based precise positioning. Furthermore, it is analyzed the precise positioning pre-performance of this cluster design based on the spatial error and verified its suitability as the precise positioning pre-performance of the cluster design.

Command Generation Method for High-Speed and Precise Positioning of Positioning Stage (위치결정 스테이지의 고속 정밀 위치결정을 위한 입력성형명령 생성 기법)

  • Jang, Joon-Won;Park, Sang-Won;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.122-129
    • /
    • 2008
  • This paper deals with precise positioning of a high-speed positioning stage without inducing residual vibration by using an input shaping technique. Input shaping is well known to be a very effective tool for suppressing the residual vibration of flexible structures. However, the ordinary input shaping for positioning stages is designated mostly for velocity regulation, not for the residual vibration at the target position. The main difficulties in implementing input shaping along with precise positioning are the time delay caused by the servo system characteristics and the s-curve feature often employed in some motor controllers. This paper analyzes the dynamic responses of a single-mode-dominate stage system subjected to input shaping. A theoretical model is developed io investigate the nature of system. In order to overcome the difficulty, this paper proposes an improved input shaper based on modified command profile generation. The proposed method is proved effective through experiments and simulations.

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Design of a Model Reference Adaptive Control System with Dead Zone

  • Yokota, Yukihiro;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1239-1244
    • /
    • 2004
  • Precise positioning is an important problem facing motion control systems which usually use electric motor. A motor possesses a nonlinear property which degrades the positioning accuracy. Therefore, a compensator which linearizes the relationship between the angular velocity and input signal of the motor is required to enable precise positioning. In this paper, the design of a Model Reference Adaptive Control System (MRACS) for realizing the precise positioning for a system using a motor including the nonlinear property is described. The designed MRACS is applied to the attitude control problem on a satellite using a DC servomotor to drive its reaction wheel. Experimental results demonstrate the validity of a proposed control method for a positioning control system with an electric motor.

  • PDF

GNSS Precise Positioning Design for Intelligent Transportation System (지능형 교통시스템에 적합한 위성항법 기반의 정밀측위 구조 설계)

  • Lee, Byung-Hyun;Im, Sung-Hyuck;Heo, Moon-Beom;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1034-1039
    • /
    • 2012
  • In this paper, a structure of precise positioning based on satellite navigation system is proposed. The proposed system is consisted with three parts, range domain filter, navigation filter and position domain filter. The range domain filter generates carrier phase-smoothed-Doppler and Doppler-smoothed-code measurements. And the navigation filter calculates position and velocity using double-differenced code/carrier phase/Doppler measurements. Finally, position domain filter smooth position error, and it means enhancement of positioning performance. The proposed positioning method is evaluated by trajectory analysis using precise map date. As a result, the position error occurred by multipath or cycle slip was reduced and the calculated trajectory was in true lane.