• Title/Summary/Keyword: precipitation method$CO_{2}$

Search Result 276, Processing Time 0.027 seconds

Synthesis of Yttria Stabilized Zirconia Powder with Rare Earth Using Oxalate Method (옥살산법을 이용하여 희토류를 첨가한 안정화 지르코니아 분말 합성)

  • Nam, Jeong Sic;Lee, Ji-Sun;Lee, Young-Jin;Jeon, Dae-Woo;Kim, Sun-Woog;Ra, Yong-Ho;Kim, Sae-Hoon;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.174-177
    • /
    • 2019
  • The traditional yttria-stabilized zirconia (YSZ) used in thermal barrier coatings has a limited operating temperature owing to densification and volume changes at high temperatures. A $(La_{1-x}Y_x)_2Zr_2O_7$ sintered compound was prepared by the co-precipitation and oxalate methods, by adding lanthanum zirconate to yttria. The thermal properties and crystallinity obtained by the two different methods were compared. Both methods yielded pyrochlore structures, and the oxalate method confirmed phases at low temperatures. The thermal conductivity of the sintered bulk prepared by co-precipitation was 0.93 W/mK, while that prepared by the oxalate method was 0.85 W/mK. These values are superior to that of 4YSZ at $1,000^{\circ}C$, which is widely used in industries.

High Purity Ferric Oxide : Origin of Impurities and IROX-NKK Purification Process

  • Maeda, T.
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.21-23
    • /
    • 2002
  • A new process based on the co-precipitation method was developed fer removing harmful impurities during Mn-Zn ferrite production such as $SiO_2$ and P from waste pickle liquor. By this process a final result of less than 100 ppm of $SiO_2$ and less than 10 ppm of P content in the ferric oxide is easily attained. Though Ca cannot be removed by this process, water rinsing of the ferric oxide is effective fer reducing Ca content to less than 100 pm. For further purification, the origins of each impurity must be investigated and then taken away.

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).

A Study of $SrTiO_3$ Synthesis by Direct Wet Process ($SrTiO_3$의 습식 직접 합성법)

  • 이종근;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 1984
  • It is desirable to establish reliable synthetic methods for electro-ceramic materials. To synthesize $SrTiO_3$ in this study direct solid state reactions and wet chemical processes were used. Previous study of $SrTiO_3$ synthesis included oxalated-method($SrTiO(C_2O_4)_2$.$4H_2O$) co-precipitation$(SrCO_3+TiO(OH)_2)$ and direct solid state reaction$(SrCO_3+TiO(OH)_2)$ The methods in question lead to intermediate inclusion during the reactions and less controllable in particle sizes of $SrTiO_3$. To obtain highly pure $SrTiO_3$ so-called "direct wet process method" was added in this investigation. In the study the "direct wet process" was for the first time applied to synthesize chemically pure and fine particle $SrTiO_3$. $SrCl_2$ and $TiCl_4$<\ulcornerTEX> at KOH solution at room temperature to 10$0^{\circ}C$ precipitated $SrTiO_3$ The particle size increased as temperature increased.mperature increased.

  • PDF

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.

Characteristics of precipitation treatment for Ca and Mg pretreatment of brine generated from MD/RO desalination plant (MD/RO 담수화 플랜트에서 발생한 농축수의 Ca 및 Mg 전처리를 위한 침전 처리 특성)

  • Shim, Jae-Ho;Park, Jae-Chul;Lim, Dae-Hwan;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.329-338
    • /
    • 2017
  • The problem of disposal of brine due to increased MD/RO desalination plant has recently become a big social issue. The chlor-alkali process through electrolysis of brine has been studied as a method to overcome this problem. In order to increase the electrolysis efficiency, a pretreatment process for removal of hard substances must be preceded. In this study, we investigated the mechanism of removal of hardness through chemical precipitation. As a result, Ca was greatly influenced by addition of $Na_2CO_3$, and Mg was strongly influenced by pH. Also, the addition of NaOH and $Na_2CO_3$ enabled simultaneous removal of Ca and Mg, and showed a removal efficiency of 99.9% or more. Finally, the residual concentrations of Ca and Mg in the brine after the reaction were 0.14 and 0.13 mg/L, respectively. Saturation index was calculated using Visual MINTEQ 3.1, and solid phase analysis of the precipitate was performed by FE-SEM and PXRD analysis. It was confirmed that precipitate formed by the formation of calcite and brucite.

Synthesis and high Temperature properties of Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel prepared by oxalate precipitation (Oxalate 침전법의 의한 Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel의 합성 및 고온특성)

  • 김세호;이병우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2000
  • Synthesis and high temperature phase stability of $_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$(0$\leq$x$\leq$0.2,y=0,1/9,1/6) spinel, both the excess lithium and cobalt added, have been studied. The spinel was prepared by oxalate precipitation method as the wet chemical process. Oxalate derived spinel was synthesized by heating of precipitates at temperature lower than $600^{\circ}C$. As a result of the TG-DTA and XRD analysis of prepared and quenched powders, it was found that reversible phase transitions started at temperatures $T_1$, $T_2$$T_{2'}$. The transitions involved weight (oxygen) loss and gain during heating and cooling. The effects of Li excess and Co doping on the spinel lattice constant, phase stability and transition temperatures of the prepared powders are investigated. This study would provide important data for determining the spinel preparation process such as synthesis temperature and cooling speed.

  • PDF

Synthesis of Vaterite Powders with a Spherical Shape by the Precipitation Method (침전법에 의한 구형 Vaterite분말의 합성)

  • 윤봉구;신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1208-1212
    • /
    • 2003
  • CaCO$_3$ powders were synthesized by aqueous solution reaction of CaC1$_2$ㆍ2$H_2O$-(NH$_4$)$_2$CO$_3$ system with NH$_4$OH at 45$^{\circ}C$ and pHs 8, 9, 10, and 11 and in the concentration range of 0.1∼5 M and its polymorphism, morphology and size were investigated. In order to investigate the influence of pH on nucleation, pH was adjusted before and after reaction respectively. When pH was adjusted after reaction a formation ratio of vaterite was increased with increasing pH and concentration but vaterite was formed with calcite. But, when pH was adjusted before reaction, the formation rate of vaterite was increased with increasing pH and concentration. resulting in a phase-pure vaterite with a spherical shape and 2∼5 $\mu\textrm{m}$ in size. It was found that solubility of alkaline vaterite was decreased with increasing OH- ions in the high pH solution. When pH was adjusted before nucleation in the high concentration range, in particular, decreasing of solubility disturbed transformation of initially formed numerous vaterite to calcite.

The Effect of Ba and Fe Concentration on Soft Magnetic Properties of Z-Type Barium Ferrite (Z-Type 바리움 페라이트 분말의 연자성 특성에 미치는 Ba 및 Fe 농도의 영향)

  • Cho, Kwang-Muk;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • Z-type barium ferrite [($Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$, $Ba_{3+{\delta}}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$ ${\delta}$ = 3, 5, 7, 13 wt%. $Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24+{\delta}}O_{41}$ ${\delta}$ = 5, 7, 10 wt% )] were synthesized using co-precipitation method. The microstructure and magnetic properties of synthesized particles were investigated. In all prepared particles M-type Ba ferrite is identified with Z-type Ba ferrite together. It is found that particles having 7 wt% for Ba and 5 wt% for Fe excess addition revealed high saturation magnetization, respectively. All synthesized particles showed relatively high coercivity for device application. This result may be attributed to the contribution of M-type Ba ferrite. Ba and Fe excess addition was not affected to the structural change of CoZnZ Ba ferrite. The certain amount of excess additions of Ba and Fe and the 2 step heat-treatment may be beneficial to the improvement of soft magnetic properties of Z-type barium hexa-ferrite

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.