• Title/Summary/Keyword: precipitation distribution type

Search Result 74, Processing Time 0.034 seconds

Case Study on the Physical Characteristics of Precipitation using 2D-Video Distrometer (2D-Video Distrometer를 이용한 강수의 물리적 특성에 관한 사례연구)

  • Park, Jong-Kil;Cheon, Eun-Ji;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.345-359
    • /
    • 2016
  • This study analyze the synoptic meteorological cause of rainfall, rainfall intensity, drop size distribution(DSD), fall velocity and oblateness measured by the 2D-Video distrometer(2DVD) by comparing two cases which are heavy rainfall event case and a case that is not classified as heavy rainfall but having more than $30mm\;h^{-1}$ rainrate in July, 2014 at Gimhae region. As a results; Over the high pressure edge area where strong upward motion exists, the convective rain type occurred and near the changma front, convective and frontal rainfall combined rain type occurred. Therefore, rainrate varies based on the synoptic meteorological condition. The most rain drop distribution appeared in the raindrops with diameters between 0.4 mm and 0.6 mm and large particles appeared for the convective rain type since strong upward motion provide favorable conditions for the drops to grow by colliding and merging so the drop size distribution varies based on the location or rainfall types. The rainfall phases is mainly rain and as the diameter of the raindrop increase the fall velocity increase and oblateness decrease. The equation proposed based on the 2DVD tends to underestimated both fall velocity and oblateness compared with observation. Since these varies based on the rainfall characteristics of the observation location, standard equation for fall velocity and oblateness fit for Gimhae area can be developed by continuous observation and data collection hereafter.

Comparative Analysis of regional and at-site frequency for the design rainfall by Log-Pearson Type III Distribution (Log-Pearson Type III 분포형에 의한 강우의 점빈도 및 지역빈도 비교분석)

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk;Maeng, Sung-Jin;Song, Ki-Hurn;Kim, Gi-Chang
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.475-478
    • /
    • 2003
  • This study was conducted to compare the design rainfall derived by the at-site and regional frequency analysis based on the regionalization of the precipitation. The regional and at-site design rainfalls were calculated by Log-Pearson type III distribution using Indirect Methods of Moments(WRC). The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), Relative bias(RBIAS) and Relative reduction(RR) in RRMSE were computed and compared between design rainfalls resulted from observed and simulated data using the regional and at-site analysis. It was shown that the regional analysis procedure can substantially reduce the RRMSE, RBIAS in comparison with those of at-site analysis. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

  • PDF

The Characteristics of Probable Maximum Flood on Wi Stream Watersheds (위천유역(渭川流域)의 가능최대홍수량(可能最大洪水量) 특성(特性))

  • Choi, Kyung-Sook;Suh, Seung-Duk
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.37-44
    • /
    • 1998
  • The estimation of PMP (Probable Maximum Precipitation) and the analysis of characteristics of PMF (Probable Maximum Flood) according to the types of time distribution of rainfall and variations of base flow for the determination of design flood of major hydraulic structures in the watershed area of Wi stream were analysed. The PMP was estimated by the hydro-meteorological method suggested by the guideline of the World Meteorological Organization(WMO). The Blocking method was cited to transpose from PMP to PMS (Probable Maximum Storm) with time distribution. The unit hydrograph, applied for the estimation of PMF was derived by Clark's method. The summaryzed results : (1) The 72 hrs duration PMP in the area is 477.3mm which is 80mm less than the PMP map in Korea and 134 mm lager than the maximum precipitation of 342.9mm in Taegu, near the Wi stream watershed. (2) According to the types of time distribution and variations of base flow, the ranges of PMF for advanced type, central type and delayed type are 3,145.3~3,348.3cms, 3,774.6~3,977.7cms and 3,814.6~4,017.3cms, respectively. Those mean that peak discharge of advanced type is 600cms less than the central type and delayed type. (3) Delayed type among three types by Blocking method has been estimated the largest PMF of 4,017.3cms, and the advanced type has been estimated the smallest PMF of 3,145.3cms. The mean value of the peak PMF of 3,653.6cms may probably be resonable PMF in the Wi stream watershed. The mean PMF could probably be 1.7 times lager than the result of Gajiyama's equation. It is equivalent to the flood of return period 1,000 to 10,000 yrs.

  • PDF

Analysis of Users' Satisfaction Utility for Precipitation Probabilistic Forecast Using Collective Value Score (그룹 가치스코어 모형을 활용한 강수확률예보의 사용자 만족도 효용 분석)

  • Yoon, Seung Chul;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.97-108
    • /
    • 2015
  • This study proposes a mathematical model to estimate the economic value of weather forecast service, among which the precipitation forecast service is focused. The value is calculated in terms of users' satisfaction or dissatisfaction resulted from the users' decisions made by using the precipitation probabilistic forecasts and thresholds. The satisfaction values can be quantified by the traditional value score model, which shows the scaled utility values relative to the perfect forecast information. This paper extends the value score concept to a collective value score model which is defined as a weighted sum of users' satisfaction based on threshold distribution in a group of the users. The proposed collective value score model is applied to the picnic scenario by using four hypothetical sets of probabilistic forecasts, i.e., under-confident, over-confident, under-forecast and over-forecast. The application results show that under-confident type of forecasts outperforms the others as a measure of the maximum collective value regardless of users' dissatisfaction patterns caused by two types of forecast errors, e.g., miss and false alarm.

The Regionality of the Variation of Summer Precipitation in Korea (한국의 여름 강수량 변동의 지역성)

  • Kang, Man-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.139-152
    • /
    • 2000
  • The regional characteristics of summer precipitation in Korea are analyzed with the data observed in 66 stations from 1973 to 1997, using the cluster analysis method. In the phenomena of summer precipitation, the rain-rich regions lie in the south coast region, the northern part of Kyonggi Province, and Yongdong region. The monthly precipitation is mostly influenced by Changma fronts and cyclons in June, Changma fronts in July, typhoons in August, and all of typhoons, Changma, and cyclons in September. The increasing and decreasing trends of the monthly precipitation are equally divided with regard to both regional groups and monthly distribution in the cluster analysis. Especially such trends are considerably clear in the rain-rich regions. The increasing tendency is predominant in the northern part of Kyonggi Province and Yongdong region, while the decreasing trend and the periodicity are noted in the south coast region and Cheju Island. The variation of the monthly precipitation is shown to be great in the rain-rich regions, while it is not much associated with the rain-scare regions. Also, the variation is the greatest in September, while the least variation is shown in July.

  • PDF

Effect of Supporting Anions on Particle Characteristics of Barium Titanyl Oxalate Formed by Homogeneous Precipitation (지지 음이온이 균일 침전법에 의해 생성된 Barium Titanyl Oxalate의 입자특성에 미치는 영향)

  • Ryu, Kyoungyoul;Huh, Wooyoung;Lee, Chul
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.260-265
    • /
    • 1998
  • Spherical, ${\mu}m$-sized particles of barium titanyl oxalate were prepared by thermal decomposition of dimethyl oxalate in acidic barium and titanium solutions. Precipitation was carried out in the presence of several supporting anions. Spherical particles having a specific type of particle size distribution. i.e., unimodal or bimodal distribution, with mean size in the range of $0.2{\sim}3{\mu}m$, were formed depending on the supporting anions, oxalate ion generation rate and aging time. Particles of barium titanyl oxalate settled on the bottom of the beaker at the aging time of 120 min grew to the critical monosize of about $1.5{\sim}3{\mu}m$. XRD spectra and chemical analyses of barium titanate showed that barium titanyl oxalate with high qualities could be synthesized by choosing chloride ion as a supporting anion and increasing the reaction temperatures.

  • PDF

Fundamental Theory of flow of water in bends of open channel (하천의 만곡류에 관한 이론적 고찰)

  • 선우중호;윤영남
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.53-70
    • /
    • 1977
  • The analysis performed here is aimed to increase the familiarity of hydrologic process especially for the small basins which are densely gaged. Kyung An and Mu Shim river basins are selected as a representative basin according to the criteria which UNESCO has established back in 1964 and being operated under the auspice of Ministry of Construction. The data exerted from these basins is utilized for the determination of characteristics of procipitation and runoff phenomena for the small basin, which is considered as a typical Korean samall watershed. The study found that the areal distribution of preciptation did not show any significant deviation from the point rainfall. Since the area studied is less than 20 km#, the pointrainfall may be safely utilized as a representative value for the area. Also the effect of elevation on the precipitation has a minor significance in the small area where the elevation difference is less than 200m. The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to find the suitability of the method to Korean river basin. The soil cover complex number or runoff curve number was determined by comsidering the type of soil, soil cover, land use and other factors such as antecedent moisture content. The average values of CN for Kyung An and Mushim river basins were found to be 63.9 and 63.1 respectively under AMC II, however, values obtained from soil cover complex were less than those from total precipitation and effective precipitation about 10-30%. It may be worth to note that an attention has to be paid in application of SCS method to Korean river basin by adjusting 10-30% increase to the value obtained from soil cover complex. Finally, the design flood hydrograph was consturcted by employing unit hydrograph technique to the dimensionless mass curve. Also a stepwise multiple regression was performed to find the relationship between runoff and API, evapotranspiration rate, 5 days antecedentprecipitation and daily temperature.

  • PDF

Application of Percentile Rainfall Event for Analysis of Infiltration Facilities used by Prior Consultation for LID (Low Impact Development)

  • Kwon, Kyung-Ho;Song, Hye-Jin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.5-12
    • /
    • 2015
  • Purpose: Retention and infiltration of small and frequently-occurring rainfall by LID facilities account for a large proportion of the annual precipitation volume. Based on 4 standard facilities such as Porous Pavement, Infiltration Trench, Cylindrical Infiltration Well, Rectangular Infiltration Well by Seoul Metropolitan Handbook of the Prior Consultation for LID. The total retention volume of each facility was calculated according to the type and size. The Purpose of this study is to find out the quantitative relationship between Percentile Rainfall Event and Design Volume of Infiltration Facilities. Methode: For the estimation of Percentile Rainfall Event, Daily Precipitation of Seoul from 2005 to 2014 was sorted ascending and the distribution of percentile was estimated by PERCENTILE spreadsheet function. The managed Rainfall Depth and Percentile of each facility was calculated at the several sizes. In response to the rainwater charge volume of 5.5mm/hr by the Category "Private large site", the 3 types of facilities were planned for example. The calculated Rainfall Depth and Percentile were 54.4mm and 90% by the use of developed Calculation-Module based on the Spreadsheet program. Result: With this Module the existing Designed Infiltration volume which was introduced from Japan was simply converted to the Percentile-Rainfall-Event used in USA.

Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation (강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석)

  • Cha, Joo-Wan;Chang, Ki-Ho;Oh, Sung-Nam;Choi, Young-Jean;Jeong, Jin-Yim;Jung, Jae-Won;Yang, Ha-Young;Bae, Jin-Young;Kang, Sun-Young
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.

Analysis of Groundwater Flow Characterstics and Hydraulic Conductivity in Jeju Island Using Groundwater Model (지하수 모델을 이용한 제주도 지하수 유동특성 및 수리전도도 분석)

  • Kim, Min-Chul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1157-1169
    • /
    • 2019
  • We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 - 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.