• Title/Summary/Keyword: precipitation data

Search Result 1,952, Processing Time 0.03 seconds

Stable Isotopic Variation of Precipitation in Pohang, Korea (포항 강수의 안정 동위원소 조성 변화)

  • Lee, Kwang-Sik;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.321-325
    • /
    • 1997
  • In this paper an attempt is made to explain some of the factors controlling oxygen and hydrogen isotopic variations of precipitation in Pohang by analysing the IAEA data (1961~1976) through statistical correlations and trend observations. During this period, the values of ${\delta}^{18}O$ and D varied widely from -17.80 to +0.07‰, and from -131.9 to +7.7‰, respectively, and fall along a local meteoric water line defined by ${\delta}D=(8.05{\pm}0.32)$ ${\delta}^{18}O+(12.72{\pm}2.44)$ (n=108, ${\gamma}^2=0.86$). The ${\delta}^{18}O$ and ${\delta}D$ values of the precipitation appear to be little dependent on temperature. Although the amount effect is clearly shown in summer precipitation of 1963 and 1965, the isotopic composition of summer precipitation seems not to be greatly dependent on the amount of precipitation.

  • PDF

Effect of Precipitation on Sea Surface Wind Scatterometry

  • Yang, Jilong;Zhang, Xuehu;Chen, Xiuwan;Esteban, Daniel;McLaughlin, David;Carswell, Jim;Chang, Paul;Black, Peter;Ke, Yinghai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1359-1361
    • /
    • 2003
  • A set of microwave remote sensing data collected with the newly developed UMass Imaging Wind and Rain Airborne Profiler (IWRAP) during the 2002 Atlantic Hurricane Season was analyzed to further our understanding of the effect of precipitation on scatterometer wind vector retrieval. Coincident surface wind speed and precipitation measurements were provided by the UMass Simultaneous Frequency Microwave Radiometer (SFMR). The differences between the wind estimations from IWRAP and SFMR under precipitation conditions of 0-100mm/hr and wind speed of 0-60m/s was calculated, from which the effect of precipitation on the wind vector retrieval using scatterometry is analyzed qualitatively.

  • PDF

Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds

  • Jang, S.;Hwang, M.;Hur, Y. T.;Yi, J.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.738-739
    • /
    • 2015
  • The main objective of this study, "Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds", is to carry out over Han River and Imjin River watersheds. To this end, a statistical regression method with MOS (Model Output Statistics) corrections at every downscaling step was developed and applied for downscaling the spatially-coarse Global Climate Model Projections (GCMPs) from CCSM3 and CSIRO with respect to precipitation into 0.1 degree (about 11 km) spatial grid over study regions. The spatially archived hydro-climate data sets such as Willmott, GsMap and APHRODITE datasets were used for MOS corrections by means of monthly climatology between observations and downscaled values. Precipitation values downscaled in this study were validated against ground observations and then future climate simulation results on precipitation were evaluated for the projections.

  • PDF

Analysis for Precipitation Trend and Elasticity of Precipitation-Streamflow According to Climate Changes (기후변화에 따른 강우 경향성 및 유출과의 탄성도 분석)

  • Shon, Tae Seok;Shin, Hyun Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.497-507
    • /
    • 2010
  • Climate changes affect greatly natural ecosystem, human social and economic system acting on constituting the climate system such as air, ocean, life, glacier and land, etc. and estimating the current impact of climate change would be the most important thing to adapt to the climate changes. This study set the target area to Nakdong river watershed and investigated the impact of climate changes through analyzing precipitation tendency, and to understand the impact of climate changes on hydrological elements, analyzed elasticity of precipitation-streamflow. For the analysis of precipitation trend, collecting the precipitation data of the National Weather Service from major points of Nakdong river watershed, resampling them at the units of year, season and month, used as the data of precipitation trend analysis. To analyze precipitation-streamflow elasticity, collecting area average precipitation and long-term streamflow data provided by WAMIS, annual and seasonal time-series were analyzed. In addition, The results of this study and elasticity, and other abroad study compared with the elasticity analysis and the validity of this study was verified. Results of this study will be able to be utilized for study on a plan to increase of flood control ability of flooding constructs caused by the increase of streamflow around Nakdong river watershed due to climate changes and on a plan of adapting to water environment according to climate changes.

A study on determining threshold level of precipitation for drought management in the dam basin (댐 유역 가뭄 관리를 위한 강수량 임계수준 결정에 관한 연구)

  • Lee, Kyoung Do;Son, Kyung Hwan;Lee, Byong Ju
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • This study determined appropriate threshold level (cumulative period and percentage) of precipitation for drought management in dam basin. The 5 dam basins were selected, the daily dam storage level and daily precipitation data were collected. MAP (Mean Areal Precipitation was calculated by using Thiessen polygon method, and MAP were converted to accumulated values for 6 cumulative periods (30-, 60-, 90-, 180-, 270-, and 360-day). The correlation coefficient and ratio of variation coefficient between storage level and MAP for 6 cumulative periods were used to determine the appropriate cumulative period. Correlation of cumulative precipitation below 90-day was low, and that of 270-day was high. Correlation was high when the past precipitation during the flood period was included within the cumulative period. The ratio of variation coefficient was higher for the shorter cumulative period and lower for the longer in all dam, and that of 270-day precipitation was closed to 1.0 in every month. ROC (Receiver Operating Characteristics) analysis with TLWSA (Threshold Line of Water Supply Adjustment) was used to determine the percentage of precipitation shortages. It is showed that the percentage of 270-day cumulative precipitation on Boryung dam and other 4-dam were less than 90% and 80% as threshold level respectively, when the storage was below the attention level. The relationship between storage and percentage of dam outflow and precipitation were analyzed to evaluate the impact of artificial dam operations on drought analysis, and the magnitude of dam outflow caused uncertainty in the analysis between precipitation and storage data. It is concluded that threshold level should be considered for dam drought analysis using based on precipitation.

Estimation of Monthly Precipitation in North Korea Using PRISM and Digital Elevation Model (PRISM과 상세 지형정보에 근거한 북한지역 강수량 분포 추정)

  • Kim, Dae-Jun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • While high-definition precipitation maps with a 270 m spatial resolution are available for South Korea, there is little information on geospatial availability of precipitation water for the famine - plagued North Korea. The restricted data access and sparse observations prohibit application of the widely used PRISM (Parameter-elevation Regressions on Independent Slopes Model) to North Korea for fine-resolution mapping of precipitation. A hybrid method which complements the PRISM grid with a sub-grid scale elevation function is suggested to estimate precipitation for remote areas with little data such as North Korea. The fine scale elevation - precipitation regressions for four sloping aspects were derived from 546 observation points in South Korea. A 'virtual' elevation surface at a 270 m grid spacing was generated by inverse distance weighed averaging of the station elevations of 78 KMA (Korea Meteorological Administration) synoptic stations. A 'real' elevation surface made up from both 78 synoptic and 468 automated weather stations (AWS) was also generated and subtracted from the virtual surface to get elevation difference at each point. The same procedure was done for monthly precipitation to get the precipitation difference at each point. A regression analysis was applied to derive the aspect - specific coefficient of precipitation change with a unit increase in elevation. The elevation difference between 'virtual' and 'real' surface was calculated for each 270m grid points across North Korea and the regression coefficients were applied to obtain the precipitation corrections for the PRISM grid. The correction terms are now added to the PRISM generated low resolution (~2.4 km) precipitation map to produce the 270 m high resolution map compatible with those available for South Korea. According to the final product, the spatial average precipitation for entire territory of North Korea is 1,196 mm for a climatological normal year (1971-2000) with standard deviation of 298 mm.

Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea (서울지역 장기간 강수와 미세먼지의 특성 분석에 기반한 미세먼지 세정효과)

  • Suji Han;Junshik Um
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.367-385
    • /
    • 2023
  • The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.

Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia (다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Sur, Chanyang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.

A Sensitivity of Simulated Runoff Characteristics on the Different Spatial Resolutions of Precipitation Data (강우자료의 공간해상도에 따른 모의 유출특성 민감도 고찰)

  • Lee, Dogil;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.37-49
    • /
    • 2023
  • Rainfall data is one of the most important data in hydrologic modeling. In this study, the impacts of spatial resolution of precipitation data on hydrological responses were assessed using SWAT in the Santa Fe River Basin, Florida. High correlations were found between the FAWN and NLDAS rainfall data, which are observed weather data and simulated weather data based on observed data, respectively. FAWN-based scenarios had higher maximum rainfall and more rainfall days and events compared to NLDAS-based scenarios. Downstream areas showed lower correlations between rainfall and peak discharge than upstream areas due to the characteristics of study site. All scenarios did not show significant differences in base flow, and showed less than 5% of differences in high flows among NLDAS-based scenarios. The impact of resolution will appear differently depending on the characteristics of the watershed and topography and the applied model, and thus, is a process that must be considered in advance in runoff simulation research. The study suggests that applying the research method to watersheds in Korea may yield more pronounced results, and highlights the importance of considering data resolution in hydrologic modeling.

A study of urbanization effect to a precipitation pattern in a urban area (도시화가 도시지역 강우변화에 미치는 영향 연구)

  • Oh Tae Suk;Ahn Jae Hyun;Moon Young Il;Jung Min Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.894-899
    • /
    • 2005
  • Since 1970s, rapid industrialization brought urbanization nationwide. In this paper, precipitation changes have been studied for Seoul and other 6 major cities using 31 years of precipitation data from 1973 to 2003. In addition, to consider the other global climatic impacts including El Nino events, precipitation change comparisons have been made between urban and rural areas. Thus, statistical analysis methods have been adopted for annual precipitation, summer precipitation, 1 hour annual maxima series, and 24 hour annual maxima series for both urban and rural areas. The result yields that annual and summer precipitation have been increased in urban areas compare to rural areas.

  • PDF