• Title/Summary/Keyword: precipitated Ca carbonate

Search Result 52, Processing Time 0.023 seconds

Manufacture of Precipitated Calcium Carbonate from Pungchon Limestone (풍촌지역 석회석을 이용한 침강성탄산칼슘의 제조)

  • Lee, Jae-Jang;Park, Jong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.251-256
    • /
    • 2001
  • This research is focused on an improvement of additional value of high grade limestone. To obtain the basic data of precipitated calcium carbonate(PCC), studies of physical properties of limestone, calcination and hydration characteristics, the characteristics to manufacture quick lime, hydrated lime, ground calcium carbonate and precipitated calcium carbonate were performed. In the carbonation process, formation of rombohedral must be kept under $10^{\circ}C$ for reaction. Although the temperature of reaction of lime milk was limited under $30^{\circ}C$ for a colloidal PCC manufacture, over $50^{\circ}C$ for spindle type PCC. The recommended reaction conditions for colloidal PCC are $20^{\circ}C$ of reaction temperature, 4% of $Ca(OH)_2$ concentration, 1000rpm of stirring rate and 200ml/min of $CO_2$ gas flow rate.

  • PDF

Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$ (Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화)

  • Im, Jae-Seok;Kim, Ga-Yeon;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.73-87
    • /
    • 2004
  • The synthesis and crystallization of amorphous calcium carbonate($CaCO_3$.$nH_2 O$) obtained from gas-liquid reaction between aqueous solution of calcium hydroxide and carbon dioxide at 15~$50^{\circ}C$ are investigated by electrical conductometry, XRD and TEM. The results are as follows: The initial reaction products prior to the formation of precipitated calcium carbonate is amorphous calcium carbonate. The electrical conductivity values in the slurry are decreased during the formation of amorphous calcium carbonate which covers particle surface of calcium hydroxide and retard the dissolution of calcium hydroxide into the solution. that amorphous calcium carbonate is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. While amorphous calcium carbonate crystallizes into chain-like calcite, the conductivity values are recovered rapidly and the apparent viscosity of slurry containing higher concentration of calcium hydroxide increase. At below pH 9.5, chain-like calcite separates into individual particles to form precipitated calcium carbonate. The formation and synthetic temperature range of amorphous calcium carbonate is most suitable a primary decreasing step(a-step) at $15^{\circ}C$ in the electrical conductometry.

  • PDF

Synthesis of aragonite precipitated calcium carbonate by homogeneous precipitate reaction of $Ca(OH)_2\;and Na_2CO_3$ ($Ca(OH)_2\;및 \;Na_2CO_3$수용액의 균일침전 반응에 의한 아라고나이트 침강성 탄산 칼슘의 합성)

  • Park, Jin-Koo;Park, Hyun-Seo;Ahn, Ji-Whan;Kim, Hwan;Park, Charn-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.110-114
    • /
    • 2004
  • Formation behavior of aragonite precipitated calcium carbonate was investigated with changed the concentration of $Na_2CO_3$ solution and addition method which added in the $Ca(OH)_2$ slurry at $75^{\circ}C$. In this reaction, we found that $Na^+$ ions were substituted into $Ca^{2+}$ion site then disturb the growth of calcite, and while proceed the crystal growth in a certain direction and promote the formation of aragonite. Also, a decrease of reaction rate by control the concentration of $CO_3^{2-}$ ion, induce the homogeneous precipitate reaction and increase substitution ability of $Na^+$ ions, consequently it was promote the formation and growth of aragonite.

Study on the Dispersion Stability of Precipitated Calcium Carbonate Suspensions (침강성 탄산칼슘 현탁액의 분산 안정성에 관한 연구)

  • Park, Myung-Jae;Ahn, Ji-Whan;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.343-350
    • /
    • 2001
  • 본 연구에서는 탄산화법으로 침강성 CaCO$_3$분말을 제조하고 제조된 CaCO$_3$현탁액의 분산안정성을 연구하였다. CaCO$_3$현탁액의 pH 변화와 고분자전해질 PMAA와 PAA의 첨가에 따른 입자크기, 유동학적 특성(점도), zeta potential 및 현탁액의 침강속도 등을 측정하였다. 탄산화법에 의해 약 0.1$\mu\textrm{m}$ 크기와 비표면적이 23.57$m^2$/g인 단분단 calcite형 CaCO$_3$분말을 제조하였다. pH가 11인 CaCO$_3$현탁액에 0.01 wt% PMAA가 첨가된 경우에 우수한 분산안정성을 나타내었는데 이는 CaCO$_3$입자표면에 PMAA의 흡착에 의한 electrosteric 안정화기구와 CaCO$_3$입자들 사이의 정전기적 반발력에 의한 것으로 판단된다. PMAA와 PAA 첨가량 변화에 따른 pH 6, 9, 11의 CaCO$_3$현탁액의 침전높이를 측정한 결과 PMAA와 PAA의 농도가 0.15 wt% 부근에서 분산안정성을 보였는데 이는 CaCO$_3$입자들 사이간의 분산제에 의한 뚜렷한 경계를 갖는 흡착층이 형성되었기 때문으로 생각되며 따라서 CaCO$_3$현탁액의 최적 분산안정성을 위해서는 적절한 pH 조절과 PMAA 및 PAA의 첨가가 필요함을 알 수 있다.

  • PDF

Morphological Change of Precipitated Calcium Carbonate by Reaction Rate in Bubble Column Reactor (기포탑 반응기에서 반응 속도에 따른 침강성 탄산칼슘의 모폴로지 변화)

  • Hwang, Jung Woo;Lee, Yoong;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.727-733
    • /
    • 2009
  • Effects of $Ca(OH)_2$ concentration(0.16~0.64 wt%), total volumetric flow rate(3~6 L/min) and $CO_2$ volume fraction(0.3~0.6) on morphology of the precipitated $CaCO_3$ and the mean particle size of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor($0.11m-ID{\times}1.0m-high$) with a internal tube($0.04m-ID{\times}1.0m-high$). The calibration curve on the mass ratio of $CaCO_3$ to $Ca(OH)_2$ was obtained by FT-IR for the conversion of $Ca(OH)_2$ with the reaction time. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the crystal size of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt%). In addition, the crystal size of precipitated $CaCO_3$ decreased with increasing the concentration of $Ca(OH)_2$, but the mean particle size of precipitated $CaCO_3$ increased with increasing the concentration of $Ca(OH)_2$.

Effect of Agitation and Additive on the Vaterite Contents of Precipitated Calcium Carbonate from Oyster Shell Waste (폐 굴껍질 이용 침강성 탄산칼슘 제조에서 교반속도와 첨가제가 Vaterite 함유량에 미치는 영향)

  • Young-Cheol Bak
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.95-101
    • /
    • 2023
  • An experiment was conducted to produce vaterite-type precipitated calcium carbonate from waste oyster shells in order to use them as recyclable resources. Calcined oyster shells containing calcium oxide as their main component were prepared at a temperature of 800℃ for 24 h. The oyster shells were dissolved in nitric acid or hydrochloric acid solution to make 0.1 M calcium nitrate or calcium chloride aqueous solution, and a carbonation reaction was performed using a 0.1 M sodium carbonate aqueous solution under various experimental conditions, which included varying the amount of aspatic acid additive, the amount of NH4OH added, the reaction time, the reaction temperature, the stirring speed, and the type of dissolved acid. The XRD, SEM, and size distributions were analyzed and the vaterite content was calculated. Spherical precipitated calcium carbonate with a vaterite content of 95.9% was synthesized by adding 0.1 mol aspatic acid/1 mol CaO and 2 cm3 of NH4OH, and reacting for 1 h at 25℃ while stirring at 600 rpm. The average particle diameter was found to be 12.11 ㎛. Calcium carbonate contatining high vaterite is used as high value added calcium carbonate for medical, food, inke additiver, etc.

Formation Behavior of Precipitated Calcium Carbonate Polymorphs by Supersaturation (과포화도에 의한 침강성 탄산칼슘 다형체의 생성거동)

  • Ahn, Young jun;Jeon, ong Hyuk;Lee, Shin Haeng;Yu, Young Hwan;Jeon, Hong Myeong;Ahn, Ji Whan;Han, Choon
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.22-31
    • /
    • 2015
  • From results obtained by adjusting experimental variables based on the kinetic, the nucleation rate for formation of precipitated calcium carbonate (PCC) was investigated. Formation behavior of PCC was investigated for various concentrations of NaOH solution and $Na_2CO_3$ addition methods in the $Ca(OH)_2$ slurry. The range of nucleation rate was investigated for dissolution rates of major ion concentrations, $Ca^{2+}$ and $CO{_3}^{2-}$. In case of high concentration of major ions, vaterite and calcite were synthesized. The high nucleation rate was achieved for lower either $Ca^{2+}$ or $CO{_3}^{2-}$ ion concentration, calcite was mainly synthesized and when concentration of major ions was low, aragonite was synthesized. Furthermore, the formation of calcite was decreased with increasing concentration of NaOH. homogeneous aragonite could be obtained by addition 5 M NaOH. Therefore, in this study, specific shape of polymorphs could be prepared through controlling supersaturation.

Formation Mechanism of Aragonite by Substitute of Mg2+ Ions

  • Choi, Kyung-Sun;Park, Jin-Koo;Ahn, Ji-Whan;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.889-892
    • /
    • 2004
  • Acicular type aragonite precipitated calcium carbonate was synthesized by carbonation reaction of $Ca(OH)_2$ slurry and $CO_2$ gas. As increasing the initial concentration of $Mg^{2+}$ ion, calcite crystal phase substantially decreased while that of aragonite crystal phase increased. According to XRD and EDS analysis, it was found that the addition of $MgCl_2$ induced the $Mg^{2+}$ ion to substitute in $Ca^{2+}$ ion site of calcite lattice then the unstabled calcite structure be resolved, consequently the growth of calcite structure is interrupted while the growth of aragonite structure is expedited.

Synthesis and Crystal Structure of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System CaO-$C_2 H_5 OH$-$CO_2$ (CaO-$C_2 H_5 OH$-$CO_2$계의 기.액반응에 의한 비정질 탄산칼슘의 합성 및 결정구조)

  • Im, Jae-Seok;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The synthesis and crystal structure of amorphous calcium carbonate obtained from gas-liquid reaction of CaO-$C_2 H_5 OH$-$CO_2$ system according to change of added amount of calcium oxide by blowing $CO_2$ gas and reaction time using ethanol and ethylene glycol were investigated by electric conductivity, X-ray diffraction, and scanning electron microscope. The powdery or gelatinous phases were prepared by passing $CO_2$ gas at a flow rate of 1$\ell$/min into the suspensions containing 10~40g of CaO in mixing solutions 900ml of $C_2 H_5 OH$- and 100ml of ethylene glycol. By rapid filtration and drying the both phases at $60^{\circ}C$ under reduced pressure, the phases converted to the spherical vaterite and amorphous phase. The stable phase of amorphous calcium carbonate(ACC) was formed in the region pH 7-9 but the formation regions of amorphous phase were remarkably affected by pH in the mother liquor. It seems that a part of ACC changed into chain calcite as an intermediate products. The initial reactants prior to the formation of precipitated calcium carbonate is ACC. And ACC is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. Especially ACC was produced or gelatinous phase which precipitated from the reaction of CaO-$C_2 H_5 OH$-$CO_2$ system.

  • PDF

Cell Wall Micropore Loading of Pulp Fibers (펄프 섬유의 세포벽 미세공극 충전)

  • Lee, Jong-Man;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF