• Title/Summary/Keyword: precipitable water vapor

Search Result 75, Processing Time 0.035 seconds

Relationship between temporal variability of TPW and climate variables (가강수량의 변화패턴과 기후인자와의 상관성 분석)

  • Lee, Darae;Han, Kyung-Soo;Kwon, Chaeyoung;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Chang-suk
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Water vapor is main absorption factor of outgoing longwave radiation. So, it is essential to monitoring the changes in the amount of water vapor and to understanding the causes of such changes. In this study, we monitor temporal variability of Total Precipitable Water (TPW) which observed by satellite. Among climate variables, precipitation play an important part to analyze temporal variability of water vapor because it is produced by water vapor. And El $Ni{\tilde{n}}o$ is one of climate variables which appear regularly in comparison with the others. Through them, we analyze relationship between temporal variability of TPW and climate variable. In this study, we analyzed long-term change of TPW from Moderate-Resolution Imaging Spectroadiometer (MODIS) data and change of precipitation in middle area of Korea peninsula quantitatively. After these analysis, we compared relation of TPW and precipitation with El $Ni{\tilde{n}}o$. The aim of study is to research El $Ni{\tilde{n}}o$ has an impact on TPW and precipitation change in middle area of Korea peninsula. First of all, we calculated TPW and precipitation from time series analysis quantitatively, and anomaly analysis is performed to analyze their correlation. As a result, TPW and precipitation has correlation mostly but the part had inverse correlation was found. This was compared with El $Ni{\tilde{n}}o$ of anomaly results. As a result, TPW and precipitation had inverse correlation after El $Ni{\tilde{n}}o$ occurred. It was found that El $Ni{\tilde{n}}o$ have a decisive effect on change of TPW and precipitation.

Pecipitable Water Vapor Change Obtained From GPS Data

  • Kingpaiboon, Sununtha;Satomura, Mikio;Horikawa, Mayumi;Nakaegawa, Tosiyuki;Shimada, Seiichi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.384-386
    • /
    • 2003
  • GPS observation has been performed at Khon Kaen in northeast Thailand to investigate the Precipitable Water Vapor (PWV) change since August 2001 by using a Trimble 4000SSi receiver. The data obtained in the period from March to June in 2002 were processed by using CAMIT software to obtain the Zenith Tropospheric Delay (ZTD) at every one hour referring to some IGS stations around Thailand. We estimated the Zenith Hydrostatic Delay (ZHD) at every three hours with barometer data at Khon Kaen of Thai Meteorological Department, The Zenith Wet Delay (ZWD) was obtained by subtracting ZHD from ZTD and PWV can be calculated from ZTD. The results obtained shows that PWV changes with a large amplitude in March and April before the monsoon onset, and also we can see steep PWV increases before rain and decreases after rain. In May and June after the onset, the PWV is almost constant to be 60 to 70 mm, but there is a semi-diurnal change which has high PWV values at about 8 and 20 o'clock in local time.

  • PDF

ANALYSIS ON GPS PWV EFFECTS AS AN INITIAL INPUT DATA OF NWP MODEL (수치예보모델 초기치로서 GPS 가강수량 영향 분석)

  • Lee, Jae-Won;Cho, Jung-Ho;Baek, Jeong-Ho;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.285-296
    • /
    • 2007
  • The Precipitable Water Vapor (PWV) from GPS with high resolution in terms of time and space might reduce the limitations of the numerical weather prediction (NWP) model for easily variable phenomena, such as precipitation and cloud. We have converted to PWV from Global Positioning System (GPS) data of Korea Astronomy and Space Science Institute (KASI) and Ministry of Maritime Affairs & Fisheries (MOMAF). First of all, we have selected the heavy rainfall case of having a predictability limitation in time and space due to small-scale motion. In order to evaluate the effect for GPS PWV, we have executed the sensitivity experiment with PWV from GPS data over Korean peninsula in the Weather Research & Forecasting 3-Dimensional Variational (WRF-3DVAR). We have also suggested the direction of further research for an improvement of the predictability of NWP model on the basis of this case.

Characteristics and Quality Control of Precipitable Water Vapor Measured by G-band (183 GHz) Water Vapor Radiometer (G-band (183 GHz) 수증기 라디오미터의 가강수량 특성과 품질 관리)

  • Kim, Min-Seong;Koo, Tae-Young;Kim, Ji-Hyoung;Jung, Sueng-Pil;Kim, Bu-Yo;Kwon, Byung Hyuk;Lee, Kwangjae;Kang, Myeonghun;Yang, Jiwhi;Lee, ChulKyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.239-252
    • /
    • 2022
  • Quality control methods for the first G-band vapor radiometer (GVR) mounted on a weather aircraft in Korea were developed using the GVR Precipitable Water Vapor (PWV). The aircraft attitude information (degree of pitch and roll) was applied to quality control to select the shortest vertical path of the GVR beam. In addition, quality control was applied to remove a GVR PWV ≥20 mm. It was found that the difference between the warm load average power and sky load average power converged to near 0 when the GVR PWV increased to 20 mm or higher. This could be due to the high brightness temperature of the substratus and mesoclouds, which was confirmed by the Communication, Ocean and Meteorological Satellite (COMS) data (cloud type, cloud top height, and cloud amount), cloud combination probe (CCP), and precipitation imaging probe (PIP). The GVR PWV before and after the application of quality control on a cloudy day was quantitatively compared with that of a local data assimilation and prediction system (LDAPS). The Root Mean Square Difference (RMSD) decreased from 2.9 to 1.8 mm and the RMSD with Korea Local Analysis and Precipitation System (KLAPS) decreased from 5.4 to 4.3 mm, showing improved accuracy. In addition, the quality control effectiveness of GVR PWV suggested in this study was verified through comparison with the COMS PWV by using the GVR PWV applied with quality control and the dropsonde PWV.

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.

Development Mechanisms of Summertime Air Mass Thunderstorms Occurring in the Middle Region of South Korea

  • Kim, K.E.;Heo B.H.;Lee, H.R.;Min, K.D.
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.34-38
    • /
    • 1995
  • A diagnostic study on the summertime air mass thunderstorms occurring in the middle region of South Korea was made by analyzing the data of surface and upper air observations as well as the surface and upper level weather charts. The key parameters used in the present study are the amount of precipitable water below 850 hPa level, the vertical profiles of water vapor content and wind, and both the temperature difference and the equivalent potential temperature difference between 850 hPa and 700 hPa levels. It is found from this study that the summertime air mass thunderstorms in the middle region of South Korea can be classified into two distinct types, type I and type II. The thunderstorms of type I occur under the atmospheric conditions of high moisture content, low vertical wind shear in low levels, and conditional instability between 850 hPa and 700 hPa levels. On the other hand, the thunderstorms of type II occur under the atmospheric conditions of less moisture content, higher wind shear and conditional instability. Furthermore, our study suggests that atmospheric instability and the amount of water vapor below 850 hPa level are complementary in the development of air mass thunderstorms. The complementary nature between these two parameters may be an explanation for the thunderstorm development in the areas of low atmospheric water vapor content such as the plains of eastern Colorado.

  • PDF

Long-term variability of Total PrecipitableWater using a MODIS over Korea (MODIS 자료를 이용한 한반도에서의 가강수량 장기변화 분석)

  • Kwon, Chaeyoung;Lee, Darae;Lee, Kyeong-Sang;Seo, Minji;Seong, Noh-Hun;Choi, Sungwon;Jin, Donghyun;Kim, Honghee;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.195-200
    • /
    • 2016
  • Water vapor leading various scale of atmospheric circulation and accounting for about 60% of the naturally occurring warming effect is important climate variables. Using the Total Precipitable Water (TPW) from Moderate Resolution Imaging Spectroradiometer (MODIS) operating on both Terra and Aqua, we study long-term Variation of TPW and define relationship among TPW and climatic parameters such as temperature and precipitation to quantitatively demonstrate the impact on climate change over East Asia focusing on the Korea peninsula. In this study, we used linear regression analysis to detect the correlation of TPW and temperature/precipitation and harmonic analysis to analyze changeable aspects of periodic characteristics. A result of analysis using linear regression analysis between TPW and climate elements, TPW shows a high determination coefficient ($R^2$) with temperature and precipitation (determination coefficient between TPW and temperature: 0.94, determination coefficient between TPW anomaly and temperature anomaly: 0.8, determination coefficient between TPW and precipitation: 0.73, determination coefficient between TPW anomaly and precipitation anomaly: 0.69). A result of harmonic analysis of TPW and precipitation of two-year to five-year cycle, amplitude contribution ratio of 3.5-year cycle are much higher and two phases are similar in 3.5-year cycle.

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.

Operation and Application Guidance for the Ground Based Dual-band Radiometer (지상 기반 듀얼 밴드 라디오미터의 운영 및 활용 가이던스)

  • Jeon, Eun-Hee;Kim, Yeon-Hee;Kim, Ki-Hoon;Lee, Hee-Sang
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.441-458
    • /
    • 2008
  • A TP/WVP-3000A, ground-based microwave radiometer, that was first introduced to South Korea has been operated since August 22, 2007 at the National Center for Intensive Observation of Severe Weathers (NCIO). Using the dual-band, the radiometer provides temperature and humidity soundings from the surface up to 10 km height with the high-temporal resolution of a few minutes. In this study, the performance of the radiometer on the predictability of the high impact weathers was evaluated and various practical applications were investigated. To verify the retrieved profile data from the radiometer, temperature and relative humidity soundings are compared with those from the rawinsonde launched at the NCIO and Gwangju station. The root mean squared errors for temperature and relative humidity soundings were smaller under rainy weather conditions. The correlation coefficient between PWVs (Precipitable Water Vapors) obtained from the radiometer and Global Positioning System satellite at Mokpo station is 0.92 on average. In order to investigate the structure and characteristics of precipitation, stability indexes related to rainfall such as the Convective Available Potential Energy (CAPE), K-index, and Storm RElative Helicity (SREH) were calculated using windprofiler at the NCIO from 14 to 16 September, 2007. CAPE and K-index tended to be large when the thermodynamic unstability was strong. On the other hand, SREH index was dominantly large when the dynamic unstability was strong due to the passage of the typhoon 'Nari'.

Accuracy Improvement of Precipitable Water Vapor Estimation by Precise GPS Analysis (GPS 관측데이터 정밀 해석을 통한 가강수량 추정 정확도 향상)

  • Song, Dong-Seob;Yun, Hong-Sic
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.27-30
    • /
    • 2007
  • The objective of this study is to improve an accuracy of PWV estimates using GPS in Korea. We determined a weighted mean temperature equation by a linear regression method based on 6 radiosonde meteorological observations, for a total 17,129 profiles, from 2003 to 2005. Weighted mean temperature, Tm, is a key parameter in the retrieval of atmospheric PWV from ground-based GPS measurements of zenith path delay. The accuracy of the GPS-derived PWV is proportional to the accuracy of Tm. And we applied the reduction of air Pressure to GPS station altitude. The reduction value of air pressure from mean sea level to GPS stations altitude is adopted a reverse sea level correction.

  • PDF