• Title/Summary/Keyword: precessional motion

Search Result 4, Processing Time 0.018 seconds

Precessional Motion of Ferromagnetic Pt/Co/Pt Thin Film with Perpendicular Magnetic Anisotropy (수직 자기 이방성을 갖는 Pt/Co/Pt 자성 박막의 세차 운동 측정 및 분석)

  • Yun, Sang-Jun;Lee, Jae-Chul;Choe, Sug-Bong;Shin, Kyoung-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.204-207
    • /
    • 2011
  • We developed a time-resolved magneto-optical Kerr effect microscope system to investigate ultrafast magnetization dynamics. Based on the pump-probe method, 0.1-ps time resolution was achieved by use of a fs Ti:Sapphire laser. The magnetization dynamics was then measured on Pt/Co/Pt thin films with various Co thicknesses. All the samples exhibited ultrafast demagnetization within a few ps by direct heating of pump laser. Some thicker samples showed precessional motion of magnetization, from which the Gilbert damping constant was determined based on the Landau-Lifshitz-Gilbert equation.

ORBITAL EVOLUTION OF SPACE DEBRIS (우주 잔재물에 대한 궤도 진화)

  • 최규홍;박종욱;서영수;경재만;이현주
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.141-148
    • /
    • 1991
  • In order to obtain a complete picture of the time dependent dynamic of 360 fragments in space, the program IODS (ISSA Orbit Determination System) has been set up. Using The program IODS, all fragments orbits of one break-up event can be generated. Perturbations due to the Earth's asymmetrical potential, the Sun, moon, air drag and solar radiation force are considered. We summarize our results as follows : I) Due to J2 term, precessional motion of all fragment orbits are (수식생략) ii) The other perturbations have very small effects.

  • PDF

Design of RF Coil for Low Magnetic-Field Osteoblast Reformation System (저 자기장 조골세포 재형성 시스템용 RF 코일 설계)

  • Mun, Sung Hyuk;Cho, Choon Sik;Kim, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.821-827
    • /
    • 2018
  • In devices used for re-forming osteoblasts to treat osteoporosis, a magnetic field is applied from the outside of the bone, and the minerals contained in the bone are aligned in a certain direction and undergo precessional motion. When a $90^{\circ}$ RF pulse is applied by using an RF coil, protons of minerals are brought to an excited state, and phosphorus activity promoting the deposition of osteoblasts in the bone is increased, thereby reshaping the bone. Miniaturizing the RF coil that generates a signal corresponding to the harmonic of the precessional motional frequency by means of the $90^{\circ}$ RF pulse can drastically reduce the overall size of the bone reshaping system. In this study, we propose a methodology for the miniaturization of the RF coil that can be used for osteoblast re-formation using a bone reshaping system. The capacitance of the designed RF coil is 25 pF, the inductance is approximately 100 nH, and the resonance frequency is 96 MHz. The radius of the end ring of the designed RF coil is 18 cm, and the total length of the leg is $2{\times}11.6cm$. The performance of the coil is verified through post-design measurement.

Fast Precessional Motion of Co/Pd Multilayer Systems Induced by Heat Treatment

  • Sohn, Jeong-Woo;Lee, Kyeong-Dong;Song, Hyon-Seok;Kim, Seon-Ock;Kim, Ji-Wan;Jeong, Jae-Woo;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.94-94
    • /
    • 2010
  • Co/Pd multilayer systems have been investigated with much attention for a long time due to the high and easily controllable perpendicular magnetic anisotropy. Two [Pd(1)/Co(0.4 nm)]5 multilayer systems - one is as-deposit, and the other is annealed at $350^{\circ}C$ - are studied with an all-optical approach. A two-color optical pump probe setup using 30 fs laser pulse at 82 MHz repetition rate is used to measure the time-resolved magneto-optical Kerr signal. It turns out the heat treatment enhances the perpendicular magnetic anisotropy, and leads to faster magnetization precession. The frequency reaches 30 GHz in the annealed sample, which is a factor of 2 larger compared to the as-deposit film.

  • PDF