• Title/Summary/Keyword: precast segmental columns

Search Result 17, Processing Time 0.019 seconds

Performance Assessment of Hollow Precast Segmental Bridge Columns with Reinforcement Details for Material Quantity Reduction (조립식 물량저감 중공 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Dong-Kyu;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • This study investigates the performance of hollow precast segmental bridge columns with reinforcement details for material quantity reduction. The proposed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. The precast segmental bridge columns provides an alternative to current cast-in-place systems. We tested a model of hollow precast segmental bridge columns under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for hollow precast segmental bridge column specimens investigated. As a result, proposed reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : I. Development and Verification of System (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : I. 시스템 개발 및 검증)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.395-405
    • /
    • 2009
  • The purpose of this study was to investigate the performance of precast segmental PSC bridge columns with precast concrete footings. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete footings is intended to support precast segmental PSC bridge columns and provides an alternative to current cast-inplace systems, particularly for areas where reduced construction time is desired. Shortened construction time, in turn, leads to important safety and economic advantages when traffic disruption or rerouting is necessary. A model of precast segmental PSC bridge columns was tested under a constant axial load and a cyclically reversed horizontal load. In the companion paper, the experimental and analytical study for the performance assessment of precast segmental PSC bridge columns with precast concrete footings is performed.

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : II. Experiments and Analyses (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.475-484
    • /
    • 2010
  • The purpose of this study is to investigate the inelastic behavior of precast concrete copings for precast segmental PSC bridge columns and to provide the details and reference data. Twelve one-fourth-scale precast concrete copings were tested under quasistatic monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast concrete copings for precast segmental PSC bridge columns and presents conclusions based on the experimental and analytical findings.

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : I. Development and Verification of System (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : I. 시스템 개발 및 검증)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.463-473
    • /
    • 2010
  • The purpose of this study was to investigate the performance of precast concrete copings for precast segmental PSC bridge columns. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete copings provides an alternative to current cast-in-place systems, particularly for areas where reduced construction time is desired. A model of precast concrete copings was tested under quasistatic monotonic loading. As a result, proposed precast coping system was equal to existing cast-in-place system in terms of required performance. In the companion paper, the experimental and analytical study for the performance assessment of precast concrete copings for precast segmental PSC bridge columns is performed.

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : II. Experiments and Analyses (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.407-419
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns with precast concrete footings and to provide the details and reference data. Six precast segmental PSC bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast segmental PSC bridge columns with precast concrete footings and presents conclusions based on the experimental and analytical findings.

Performance Assessment of Precast Segmental PSC Bridge Columns Considering P-delta effects (P-delta 영향을 고려한 프리캐스트 세그먼트 PSC 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.45-54
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast segmental PSC bridge columns with regard to P-delta effects. A model of precast segmental PSC bridge columns was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. In addition to the material nonlinear properties, an algorithm for the problem of large displacement that may result in additional deformation has been formulated using total Lagrangian formulation. This study documents the testing of precast segmental PSC bridge columns under cyclic loading, and presents conclusions based on the experimental and analytical findings.

Evaluating seismic demands for segmental columns with low energy dissipation capacity

  • Nikbakht, Ehsan;Rashid, Khalim;Mohseni, Iman;Hejazi, Farzad
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1277-1297
    • /
    • 2015
  • Post-tensioned precast segmental bridge columns have shown high level of strength and ductility, and low residual displacement, which makes them suffer minor damage after earthquake loading; however, there is still lack of confidence on their lateral response against severe seismic loading due in part to their low energy dissipation capacity. This study investigates the influence of major design factors such as post-tensioning force level, strands position, columns aspect ratio, steel jacket and mild steel ratio on seismic performance of self-centring segmental bridge columns in terms of lateral strength, residual displacement and lateral peak displacement. Seismic analyses show that increasing the continuous mild steel ratio improves the lateral peak displacement of the self-centring columns at different levels of post-tensioning (PT) forces. Such an increase in steel ratio reduces the residual drift in segmental columns with higher aspect ratio more considerably. Suggestions are proposed for the design of self-centring segmental columns with various aspect ratios at different target drifts.

Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns (조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Performance Assessment of Hollow Precast Segmental PSC Bridge Columns (중공 프리캐스트 세그먼트 PSC 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Young-Ky;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 2010
  • The purpose of this study was to investigate the performance of hollow precast segmental PSC bridge columns. The proposed system can reduce work at a construction site and makes construction periods shorter. Shortened construction times, in turn, lead to important safety and economic advantages when traffic disruption or rerouting is necessary. Two hollow precast segmental PSC bridge columns were tested under a constant axial load and a quasistatic, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures, was used. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.