• Title/Summary/Keyword: precast concrete panel

Search Result 125, Processing Time 0.025 seconds

Behavioral Characteristics of Prestressed Earth Method Reinforced with Earth Bolt (Earth Bolt로 보강된 압축토(PEM) 옹벽의 거동 특성)

  • Kim, Hong-Tak;Lee, Hyuk-Jin;Kim, Jong-Min;Ryu, June-Won;Sung, Nak-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.662-669
    • /
    • 2006
  • PEM(Prestressed Earth Method) is a method to minimize lateral movements of the ground generated by progressive excavation and increases shear strength by applying prestresses to the end of earth bolt equipped with a P.C. panel after earth bolt is set up under the in-situ ground. In case of PEM, there are noticeable advantages. First of all, PEM maximizes the utility of the ground because PEM needs less volume of backfill and cutting than other general walls. Second, it's an environmental method possible to garden on the banquette. In this study, the behavioral characteristics of PEM are analyzed and compared with soil nailing system through the measured data of PEM and numerical method using SMAP-2D program and also an increased stability of PEM is evaluated by increasing prestress of earth bolts through the numerical analysis using Slide (ver. 4.0) program.

  • PDF

Development of Wide Connection Method for Vertical Joints of Precast Concrete Walls (프리캐스트 콘크리트 벽체 수직접합부의 광폭형 연결방식 개발)

  • Choi, Eun-Gyu;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • This research analyzed the structural efficiency and application by improving the 100 mm width vertical joint to 150 mm and developing three connection methods to reduce the difficulty in assembling and handling PC walls. Moreover, nonlinear finite analysis was used for analyzing. From the analysis results, when double width connection was applied, the PC wall showed larger load capacity and ductility due to the steel bar sharing loads efficiently. Moreover, as the dimension of loops and the number of bars increased, the maximum load capacity increased as well. Also, among the double width connections, the largest capacity showed in the order of welding, ring and C type loop. However, in case of welding type loop connection, the ring type loop is more stable due to changes in different site conditions. Therefore, thorough quality control of welding is necessary.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

PST Member Behavior Analysis Based on Three-Dimensional Finite Element Analysis According to Load Combination and Thickness of Grouting Layer (하중조합과 충전층 두께에 따른 3차원 유한요소 해석에 의한 PST 부재의 거동 분석)

  • Seo, Hyun-Su;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.53-62
    • /
    • 2018
  • Follofwing the accelerating speed-up of trains and rising demand for large-volume transfer capacity, not only in Korea, but also around the world, track structures for trains have been improving consistently. Precast concrete slab track (PST), a concrete structure track, was developed as a system that can fulfil new safety and economic requirements for railroad traffic. The purpose of this study is to provide the information required for the development and design of the system in the future, by analyzing the behavior of each structural member of the PST system. The stress distribution result for different combinations of appropriate loads according to the KRL-2012 train load and KRC code was analyzed by conducting a three-dimensional finite element analysis, while the result for different thicknesses of the grouting layer is also presented. Among the structural members, the largest stress took place on the grouting layer. The stress changed sensitively following the thickness and the combination of loads. When compared with a case of applying only a vertical KRL-2012 load, the stress increased by 3.3 times and 14.1 times on a concrete panel and HSB, respectively, from the starting load and temperature load. When the thickness of the grouting layer increased from 20 mm to 80 mm, the stress generated on the concrete panel decreased by 4%, while the stress increased by 24% on the grouting layer. As for the cracking condition, tension cracking was caused locally on the grouting layer. Such a result indicates that more attention should be paid to the flexure and tension behavior from horizontal loads rather than from vertical loads when developing PST systems. In addition, the safety of each structural member must be ensured by maintaining the thickness of the grouting layer at 40 mm or more.

Nonlinear Analysis of Precast Concrete Wall Structures (프리캐스트 콘크리트 판구조의 비선형 해석)

  • 서수연;이원호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2000
  • The objective of this paper is to propose an analysis technique to predict the behavior of PC wall structures subjected to cyclic load. While PC wall panel is idealized by finite elements, the joints at which PC walls are connected each other are idealized by nonlinear spring elements. Axial and shear spring elements are developed for simulating shear, compression and tension behaviors of joints. The strength and stiffness of each spring elements we presented from the previous research results and incorporated into the computer program of DRAIN-2DX. The proposed analysis technique is evaluated by analyzing specimens previously tested and comparing with those. On the strength, stiffness, energy dissipation and lateral drift, analytical results show good agreements with test results. This means the proposed technique is effective to predict the response of the PC wall structures.

  • PDF