• Title/Summary/Keyword: pre-stress concrete

Search Result 101, Processing Time 0.022 seconds

Cable layout design of two way prestressed concrete slabs using FEM

  • Khan, Ahmad Ali;Pathak, K.K.;Dindorkar, N.
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.75-91
    • /
    • 2013
  • In this paper, a new approach for cable layout design of pre-stressed concrete slabs is presented. To account the cable profile accurately, it is modelled by B-spline. Using the convex hull property of the B-spline, an efficient algorithm has been developed to obtain the cable layout for pre-stressed concrete slabs. For finite element computations, tendon and concrete are modelled by 3 noded bar and 20 noded brick elements respectively. The cable concrete interactions are precisely accounted using vector calculus formulae. Using the proposed technique a two way prestressed concrete slab has been successfully designed considering several design criteria.

Flexural Rehabilitation Effect of Pre-loaded Reinforced Concrete Beams Strengthened by C.F.S (재하상태에 따른 탄소섬유보강공법의 휨 보강효과)

  • 한복규;홍건호;신영수;조하나;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.691-696
    • /
    • 1999
  • This paper is aimed to investigate flexural rehabilitation effect o pre-loaded reinforced concrete beams strengthened by carbon fiber sheet. Main Test parameters are reinforcement ratio and the magnitude of pro-loading and seven test beams are analyzed rehabilitation effect by carbon fiber sheet, load-deflection, failure mode, stress of reinforcing bar by the magnitude of pre-loading. Test results show that internal force was showed pre-loaded specimens lower than no-loaded specimens during rehabilitation and changing stiffness was showed in the same was and failure mode showed brittle failure from all specimens.

  • PDF

Experimental and numerical study on pre-cambered deep deck-plate system

  • Seung-Ho, Choi;Inwook, Heo;Khaliunaa, Darkhanbat;Sung-Mo, Choi;Kang Su, Kim
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.445-453
    • /
    • 2022
  • A pre-cambered deep deck-plate system has been developed that can realize a long span by offsetting the deflection caused by a construction load. In this study, finite element (FE) analysis is performed to examine the preload-camber relationship introduced into a deck and calculate the deflection reflecting the ponding effect that arises during concrete pouring. The FE analysis results showed that the stress of the bottom plate was half of the yield stress when the pre-camber of approximately 30 mm was introduced. Based on the FE results, a full-scale deep deck-plate is fabricated, a pre-camber is introduced, and concrete is poured to measure deflection. A deflection calculation formula that reflects the ponding effect is proposed, and the deflections yielded by the proposed model, experimental results, and FE results are compared. Results show that the proposed model can accurately estimate the deflection of non-supported deep deck-plate systems after concrete is poured.

Flexural Behavior of RC Beams Strengthened with Steel Plates/Carbon Fiber Sheets(CFS) under Pre-Loading Conditions

  • Shin, Yeong-Soo;Hong, Geon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • The reinforced concrete(RC) flexural members strengthened with steel plate/CFS at soffit have initial stresses and strains in reinforcements and concrete caused by the service loads at the time of retrofitting works. These initial residual stresses and strains of strengthened beams may affect the flexural performance of the rehabilitated beams. The objective of this study is to evaluate and verify the effectiveness of rehabilitation by external bonded steel plates and CFS to the tension face of the beams under three conditions of pre-loading. Thirteen beam specimens are tested and analyzed. Main test parameters are pre-loading conditions, strengthening materials and reinforcement ratio of specimens. The effect of test parameters on the strengthened beams is analyzed from the maximum load capacity, load-deflection relationship, state of stress of the materials. crack propagation phase, and failure modes. Both test results and design formulas of ACI Code provisions are compared and evaluated.

  • PDF

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.

Structural Behavior Analysis of Concrete Encased and Filled tube Square Column with Construction Sequence (시공단계를 고려한 피복충전형 콘크리트충전 각형기둥의 구조적 거동 분석)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • Constructions of buildings downtown are increasing as much as ever with a strong demand. Top-Down Method is suitable for its advantage in minimizing its disturbance to the neighborhood. Pre-founded when applied to CFT Column on-site welded is required for splicing. To complement the welded built-up square composite Column was developed. Top-down process will be pouring concrete in accordance with a step-by-step process. Thus, Pre-founded Column and cover concrete to determine the stress condition. Therefore, Concrete filled steel square tubular columns encased with precast concrete were studied. Five Centrally loaded Columns were tested to investigate the axial load carrying capacity. we analyzed the strength and behavior of CET Column by Loading conditions and concrete strength, thickness of cover concrete through structure experiments.

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

Temperature Crack Control about Sidewall of LNG in Inchon (인천 LNG지하탱크 Sidewall의 온도균열제어)

  • Koo, Bon-Chang;Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long;Choi, Woong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.329-332
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like sidewall of LNG in Inchonl.

  • PDF

Temperature Crack Contol in Subway Box Structures (지하철 박스 구조물에서의 온도균열제어)

  • Koo, Bon-Chang;Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.293-298
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like the subway structure in Seoul.

  • PDF

Study on the mix proprotion and the thermal crack of Ultra High Strength Concrete (초고강도 콘크리트의 배합 및 온도균열에 대한 연구)

  • Moon, Han-Young;Kim, Byoung-Kwon;Son, Young-Hyun;Kang, Hoon;Kim, Jeong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.265-268
    • /
    • 1999
  • In this study, we manufactured the ultra-high strength concrete using mineral admixture which is easily workable. From the test results of compressive strength, It is concluded that the proper replacement ratio of silica fume should not exceed to 10% and the replacement of slag is more effective that the replacement of fly ash to gain very high compressive strength. Thermal stress analysis is conducted to find the way of controlling the thermal crack of ultra-high strength concrete. As results of thermal stress analysis, it was found that reducing placing temperature of concrete(pre-cooling) is effective to reduce thermal crack and placing concrete in high air temperature is more effective than placing concrete in low air temperature.

  • PDF