• 제목/요약/키워드: pre-flame reaction

검색결과 19건 처리시간 0.021초

3중화염의 구조에 미치는 연료종류에 관한 수치해석 (Numerical Analysis on the Triple Flame Structure with Different Kinds of Fuel)

  • 최낙정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.88-95
    • /
    • 1999
  • This study investigates the effects of different kind fuels on the flame structure by using the numerical simulation in triple flame made by a co-flowing fuels-air stream based on the elementary chemical reaction mechanism. Methane and Hydrogen were used as fuel for this study. In order to interpret the result of the study on numerical simulation Skeletal chemistry is employe as the elementary chemical reaction mechanism for methane Gutheil's as an offset ele-mentary chemical reaction mechanism for hydrogen. The result of this study is as follows. In com-parison between the apparent burning velocity change of triple flame and the one-dimensional pre-mixed flame hydrogen fuel flame is higher than methane fuel flame. The flame thrusts out for-ward in the down stream of the boundary between air-fuel mixture and air stream and a part of the flow is bent and forks out in this protruding flame so that a triple flame is originated.

  • PDF

메탄/수소 혼합 가스의 예혼합 선회 연소특성 (Combustion Characteristics of Hydrogen/Methane gas in Pre-mixed Swirl Flame)

  • 김한석;이영덕;최원석;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.276-282
    • /
    • 2008
  • The effects of hydrogen enrichment to methane have been investigated with swirl-stabilized premixed hydrogen-enriched methane flame in a laboratory-scale pre-mixed combustor. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of hydrogen addition to the methane fuel and different swirl strengths. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using micro-thermocouple, particle image velocity meter (PIV) and chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in ignition energy from recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The higher combustibility of hydrogen makes reaction faster, raises the temperature of reaction zone and expands the reaction zone, consequently recirculation flow to reaction zone is reduced. The temperature of reaction zone increases with hydrogen addition even though the adiabatic flame temperature of the mixture gas decreases with increase in the amount of hydrogen addition in this experiment condition because the higher combustibility of hydrogen reduces the cooler recirculation flow to the reaction zone.

CARS 측정 기술을 이용한 스파크 점화 기관에서의 화염 전 화학 반응에 의한 온도 변화에 관한 연구 (A Study of the Temperature Elevation Due to the Pre-flame Reaction in a Spark-Ignition Engine Using CARS Technique)

  • 최인용;전광민;박철웅;한재원
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.9-16
    • /
    • 2001
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark- ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached look. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

CARS 를 이용한 스파크 점화 기관에서의 화염 전화학 반응에 의한 온도 변화에 관한 연구 (A Study of the Temperature Elevation Due to the Pre-flame Reaction Using CARS)

  • 최인용;전광민;박철웅;한재원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.85-92
    • /
    • 2000
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark-ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressure. Significant heating by pre-flame reaction in the end gas was observed in the late part of compression stroke under both knocking and non-knocking condition. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached 700 K. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

메탄/순산소 예혼합 화염의 선회 특성 (Combustion Characteristics of Methane/Oxygen Gas in Pre-mixed Swirl Flame)

  • 최원석;김한석;조주형;김용모;안국영;우타관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1979-1983
    • /
    • 2008
  • The effects of carbon dioxide addition to oxygen have been investigated with swirl-stabilized premixed methane flame in a laboratory-scale pre-mixed combustor. The methane fuel and oxydant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of carbon dioxide addition to the methane fuel and different swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensity of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of dilution gas in the reaction zone.

  • PDF

메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구 (A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames)

  • 김한석;조주형;김민국;황정재;이원준
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

메탄/순산소 예혼합 화염의 선회특성 (Combustion Characteristics of Methane/Oxygen in Pre-Mixed Swirl Flame)

  • 김한석;최원석;조주형;안국영
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.343-348
    • /
    • 2009
  • The present study has experimentally investigated the effects of $CO_2$ diluted oxygen on the structure of swirl-stabilized flame in a lab-scale combustor. The methane fuel and oxidant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for various amount of carbon dioxide addition to the methane fuel and various swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the hot combustion zone increases at the upstream reaction zone because of an increase in the recirculation flow for an increase in swirl intensity. The hot combustion zone is also increased at the downstream zone by recirculation flow because of an increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensities of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of diluted gas in the reaction zone.

차량용 연소식 난방기의 열 및 유동특성에 대한 수치연구 (Numerical Investigation on the Thermal and Flow Characteristics of Combustion Heater for Commercial Vehicle)

  • 황창환;백승욱
    • 한국연소학회지
    • /
    • 제16권2호
    • /
    • pp.40-46
    • /
    • 2011
  • The diesel pre-heater has being used in cabin heating and coolant heating of engine to reduce the engine warm up time for commercial vehicle. The pre-heaters are classified as diesel spray combustor and it forms diffusion flame. By using swirler, a recirculation flow of hot product gases is established near the fuel nozzle and it helps the maintaining of diffusion flame. The design difference of swirler can affect on reaction characteristics and temperature distribution inside pre-heater. The purpose of this study is the investigation of the effect of swirler configuration on combustion characteristics. To solve spray combustion problem, the Euler-Lagrange approach discrete model is used to track droplet trajectory and evaporation history. The PDF equilibrium model is used for chemical reaction model. These models are implemented into the FLUENT code.

정적 연소실내에서 화염 전파 과정에 대한 실험적 연구 (The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber)

  • 김춘중;강경구
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

高溫空氣流에 噴射한 噴霧의 自然燃燒에 관한 硏究 - 제3보: 분무의 연소기간 측정, 보조연료의 분사시간 및 난류가 분무의 착화지정기간 단축에 미치는 영향 - (A Study on the Spontaneous Ignition of the Fuel Injected into a Hot Air Stream - Part III : Measurement of Flaming Duration, Effects of Auxiliary-Fuel Injection-Timing and Turbulence on Shortening the Ignition Delay Period -)

  • 방중철;태전간랑
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.367-375
    • /
    • 1986
  • 본 연구에서는, 주분무의 착화지연기간에 미치는 보조연료 분사시기의 영향 및 공기유동을 연소장 내에 도입시켜 분무와 공기의 혼합을 적극적으로 촉진시킴에 따라 그 후의 연소과정이 어떤 영향을 받는가에 대해서 검토했다.또 소형고속 디이 젤기관에서는 분무의 연소기간을 최대한 단축 시키지 않으면 안되므로, 보조연료 분사 에 의해 그 단축목적이 어느 정도 달성될 수 있는 가능성을 제2보에서 시사한 바 있으 나 본 연구에서 더욱 상세히 검토했다.