• Title/Summary/Keyword: practical surface

Search Result 1,229, Processing Time 0.027 seconds

Surface Characterization According to the Bias Voltage of the TiAgN Coating Film Layer Formed by the AIP Process (AIP법으로 형성된 TiAgN 코팅필름의 바이어스전압에 따른 표면 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Kang, Byeong-Mo;Jeong, Woon-Jo;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.253-257
    • /
    • 2015
  • The implanting of metal products is performed with numerous surface treatments because of toxicity and adhesion. Recently, the surface modification of metal products has been actively studied by coating the surface of the TiC or TiN film. We prepared a Ti(10%)Ag Target which may be used in dental oral material by, using the AIP(arc ion plating) system TiAgN coating layer that was deposited on Ti g.23. The purpose of this study was to establish the optimal bias voltage conditions of the coated TiAgN layer formed by the AIP process. The TiAgN coatings were prepared with different bias voltage parameters (0V to -500V) to investigate the effect of bias voltage on their mechanical and chemical properties. The SEM(scanning electron microscope), EDS(energy dispersive X-ray spectrometer), XRD(X-ray diffraction), micro-hardness, and potentiodynamic polarization were measured and the surface characteristics of the TiAgN coating layers were evaluated. The TiAgN coating layer had different mechanical characteristics based on the bias voltage, which also showed differences in thickness and composition.

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Analysis of Electric Shock Hazards due to Touch Current According to Soil Resistivity Ratio in Two-layer Earth Model (2층 대지모델에서 대지저항률의 비율에 따른 접촉전류에 의한 감전의 위험성 분석)

  • Lee, Bok-Hee;Kim, Tae-Ki;Cho, Yong-Seung;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.68-74
    • /
    • 2011
  • The touch or step voltages which exist in the vicinity of a grounding electrode are closely related to the earth structure and resistivity and the ground current. The grounding design approach is required to determine the grounding electrode location where the hazardous voltages are minimized. In this paper, in order to propose a method of mitigating the electric shock hazards caused by the ground surface potential rise in the vicinity of a counterpoise, the hazards relevant to touch voltage were evaluated as a function of the soil resistivity ratio $\rho_2/\rho_1$ for several practical values of two-layer earth structures. The touch voltage and current on the ground surface just above the test electrode are calculated with CDEGS program. As a consequence, it was found that burying a grounding electrode in the soil with low resistivity is effective to reduce the electric shock hazards. In the case that the bottom layer soil where a counterpoise is buried has lower resistivity than the upper layer soil, when the upper layer soil resistivity is increased, the surface potential is slightly raised, but the current through the human body is reduced with increasing the upper layer soil resistivity because of the greater contact resistance between the earth surface and the feet. The electric shock hazard in the vicinity of grounding electrodes is closely related to soil structure and resistivity and are reduced with increasing the ration of the upper layer resistivity to the bottom layer resistivity in two-layer soil.

Dimension Reduction of Solid Models by Mid-Surface Generation

  • Sheen, Dong-Pyoung;Son, Tae-Geun;Ryu, Cheol-Ho;Lee, Sang-Hun;Lee, Kun-Woo
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.71-80
    • /
    • 2007
  • Recently, feature-based solid modeling systems have been widely used in product design. However, for engineering analysis of a product model, an ed CAD model composed of mid-surfaces is desirable for conditions in which the ed model does not affect analysis result seriously. To meet this requirement, a variety of solid ion methods such as MAT (medial axis transformation) have been proposed to provide an ed CAE model from a solid design model. The algorithm of the MAT approach can be applied to any complicated solid model. However, additional work to trim and extend some parts of the result is required to obtain a practically useful CAE model because the inscribed sphere used in the MAT method generates insufficient surfaces with branches. On the other hand, the mid-surface ion approach supports a practical method for generating a two-dimensional ed model, even though it has difficulties in creating a mid-surface from some complicated parts. In this paper, we propose a dimension reduction approach on solid models based on the midsurface abstraction approach. This approach simplifies the solid model by abbreviating or removing trivial features first such as the fillet, mounting, or protrusion. The geometry of each face is replaced with mid-patches from the simplified model, and then unnecessary topological entities are deleted to generate a clean ed model. Also, additional work, such as extending and stitching mid-patches, completes the generation of a mid-surface model from the patches.

POLYMER SURFACE MODIFICATION WITH PLASMA SOURCE ION IMPLANTATION TECHNIQUE

  • Han, Seung-Hee;Lee, Yeon-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon;Kim, Hai-Dong;Kim, Gon-ho;Kim, GunWoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.345-349
    • /
    • 1996
  • The wetting property of polymer surfaces is very important for practical applications. Plasma source ion implantation technique was used to improve the wetting properties of polymer surfaces. Poly(ethylene terephtalate) and other polymer sheets were mounted on the target stage and an RF plasma was generated by means of an antenna located inside the vacuum chamber. High voltage pulses of up to -10kV, 10 $\mu$sec, and up to 1 kHz were applied to the stage. The samples were implanted for 5 minutes with using Ar, $N_2,O_2,CH_4,CF_4$ and their mixture as source gases. A contact angle meter was used to measure the water contact angles of the implanted samples and of the samples stored in ambient conditions after implantation. The modified surfaces were analysed with Time-Of-Flight Mass Spectrometer (TOF-SIMS) and Auger Electron Spectroscopy (AES). The oxygen-implanted samples showed extremely low water contact angles of $3^{\circ}C$ compared to $79^{\circ}C$ of unimplanted ones. Furthermore, the modified surfaces were relatively stable with respect to aging in ambient conditions, which is one of the major concerns of the other surface treatment techniques. From TOF-SIMS analysis it was found that oxygen-containing functional groups had been formed on the implanted surfaces. On the other hand, the $CF_4$-implanted samples turned out to be more hydro-phobic than unimplanted ones, giving water contact angles exceeding $100^{\circ}C$ . The experiment showed that plasma source ion implantation is a very promising technique for polymer surface modification especially for large area treatment.

  • PDF

Mapping of Areal Evapotranspiration by Remote Sensing and GIS Techniques (RS/GIS수법을 이용한 廣域蒸發散量의 추정)

  • 安忠鉉
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.65-80
    • /
    • 1995
  • Remote Sensing data with ancillary ground-based meteorological data provides the capalility of computing threeof the four surface energy balance components(i.e. net radiation, soil heat flux and sensible heat flux) at different spatial and temporal scales. As a result, this enablis the estimation of the remaining term, latent heat flux. One of the practical applications with this approach is to produce evapotranspiration maps over large areas. This results could estimate and reproduce areal evapotranspiration over large area as much as several hundred sequare kilometers. Moreover, some calculating simulations for the effects of the land use change on the surface heat flux has been made by this method, which is able to estimate evapotranspiration under arbitracy presumed condition. From the simulation of land use change, the results suggests that the land use change in study area can be produce the significant changes in surface heat flux. This preliminary research suggests that the future research should involve development of methods to account for the variability of meteorological parameters brought about by changes in surface conditions and improvements in the modeling of sensible heat transfer across the surface atmosphere interface for partical canopy conditions using remote sensing information.

Effects of Acceptance of Appreciative Inquiry and Emotional Labor on Organizational Commitment and Job Satisfaction (긍정탐구 수용도와 감정노동이 조직몰입 및 직무만족에 미치는 영향)

  • Lee, Hyun-Eung;Kim, Joon-Hwan
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.149-158
    • /
    • 2019
  • In this study, the concept of emotional labor and AI(appreciative inquiry) are connected to examine how acceptance of AI, which is related to changes in hospital organizational culture, affects nurses' emotional labor, organizational commitment, and job satisfaction. For this purpose, the data collected from 156 nurses working at a major hospital were analyzed using structural equation modeling. The findings of this study are as follows: First, nurses' acceptance of AI had a significant positive effect on deep acting but not on surface acting. Second, deep acting had a significant positive effect on organizational commitment, but surface acting did not. Third, nurses' organizational commitment had a significant positive effect on job satisfaction. Fourth, deep acting significantly mediated the relationship between nurses' acceptance of AI and organizational commitment, but surface acting did not. Fifth, deep acting and organizational commitment significantly mediated the relationship between nurses' acceptance of AI and job satisfaction, but surface acting and organizational commitment did not. Theoretical and practical implications are provided based on the relationships between the variables found in this study.

Effect of Evaporative Pattern on the Surface Layer Structures of Carbon Steel and Gray Iron Castings. (소실모형이 탄소강 및 회주철 주물의 표면층 조직에 미치는 영향)

  • Kim, Ji-Youn;Cho, Nam-Don
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.305-316
    • /
    • 1992
  • Steel and iron castings made with expandable polystylene (referred to hereafter as EPS) patterns are often affected by distinctive defects associated with incomplete decomposition of the EPS as the molds are filled with metal. The effects of practical factors on carbon pick-up were investigated on the specimens, by taking successive layers of swarf and analysis, whereas the lustrous carbon is determined by using combustion analysis. The quality of the castings, with particular reference to carbon pick-up in low carbon steel and lustrous carbon on gray iron, is further influenced to a significant extent by such practical factors as reduced pressure, the pouring temperature, the density of EPS pattern, the additive in coating and in pattern and the casting thickness. The rate at which carbon pick-up and lustrous carbon deposites are formed can be reduced by reducing the density of the pattern and also reducing pressure, especially by adding $Na_2CO_3$ in coating and in pattern to promote $CO_2$ evolution. The upper parts of castings obtained using EPS patterns are slightly higher in carbon pick-up and in lustrous carbon than other parts.

  • PDF

Antenna Integration with Composite Sandwich Structure using Transmission/Reflection Methods of Incident Wave (신호의 투과/반사법을 이용한 복합재료 샌드위치 구조 속으로의 안테나 삽입)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.55-58
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effects of composites facesheet on antenna performances are investigated in the first stage and changes in the gain of microstrip antenna due to composites facesheet have been determined. ‘Open condition’ is defined when gain is maximized and is a significant new concept for the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with the outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved and the bandwidth is also as wide as specified in our requirements. With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Design and Fabrication of Composite Smart Structures for Communication (복합재료를 이용한 통신용 지능구조물 설계 및 제작)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF