• 제목/요약/키워드: pozzolans

검색결과 28건 처리시간 0.027초

재생골재를 사용한 콘크리트의 강도에 미치는 포졸란 시멘트 효과 (Effect of the Pozzolanic Cement on Concrete Strengths with Recycled Aggregate)

  • 문대중;임남웅;김양배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.217-220
    • /
    • 2001
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment, especially being want of resources in Korea. For this purpose, concrete made with the pozzolanic cement and recycled aggregate was tested for compressive and tensile strength. The pozzolanic cement was a mixture of OPC(Ordinary Portland Cement) and pozzolans such as fly ash, other siliceous materials and early rapid hardening cement(ERC). It was found that the compressive strength of the pozzolanic cement was enhanced when 0.75% of ERC was dozed, as compared with OPC mortar. It was also shown that compressive and tensile strength of concrete with recycled aggregate and pozzolanic cement were higher than those of concrete with crushed stones and OPC. It was concluded that the pozzolanic cement influenced on the increase of concrete strengths with recycled aggregate.

  • PDF

실리카 흄을 혼입한 고강도 콘크리트의 시공성 및 공학적 특성에 관한 기초적 연구 (A Fundamental Study on the Workability and Engineering Properties of Silica-Fume High Strength Concrete)

  • 권영진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.29-34
    • /
    • 1990
  • Energy cries and availability have funded extensive research and numerous conferences. So, the idea of adding slags and pozzolans such as flyash to portland cement or portland cement concrete is widely practiced because it helps to reduce cost and conserve energy, resources and the environment. Recently, Silicafume which is the industrial by-product of electric arc furnaces is also widely studied for achieving high strength concrete. It is the aim of this study to provide the fundamental data on the workability and engineering proper of high strength concrete containing flyash and silica fume comparing with plain concrete for the practical use and research data accumulation of a new technique for achieving high strength concrete.

  • PDF

모래-벤토나이트-생석회 혼합물의 강도 및 투수특성 (Strength and Permeability of Sand-Bentonite-Lime mixtures)

  • 구정민;권무남;김현기
    • 한국농공학회지
    • /
    • 제43권2호
    • /
    • pp.122-131
    • /
    • 2001
  • When mixed with lime, sand-bentonite mixture is characterized by considerable hydraulic properties similar to natural pozzolans and may therefore be increased in the strength of sand-bentonite mixture. The present study reports that results obtained in a series of laboratory tests carried out using particular mixing ratio of lime-sand-bentonite with the aim of investigating physical characteristics, permeability and strength. The results were compared and analyzed according to hydration time and lime content. Test results showed that increasing of strength and decreasing of permeability by proper lime content. Curing for longer periods increased unconfined compressive strength of mixture. Based on results of the falling head permeability test, mixtures of lime content 3%, 6% and 9% were satisfied in using as liner after 8-day curing periods.

  • PDF

콘크리트 고성재료의 수화발열 및 열적특성을 고려한 단열온도상승 예측에 관한 연구 (The estimation of adiabatic temperature rise of concrete considered hydration heat generation and thermal properties of constituents)

  • 손명수;강석화;이양수;박연동;김훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.155-160
    • /
    • 1998
  • In this study, the estimation method of adiabatic temperature rise of concrete was developed by using hydration heat generation of mineral compounds of clinker and pozzolans. Specific heat considered the effects of mix proportion and temperature was calculated with experimental data. The adiabatic temperature rise calculated by developed method were compared with experiments in which many types of cement and admixtures were used. As the results of this study, it was found that the developed method could calculate adiabatic temperature rise of concrete accurately without the experiment.

  • PDF

포졸란계 미분말 및 화학혼화제에 의한 시멘트페이스트의 유동특성에 관한 연구 (A Study on the Mobility Properties of Cement Paste by Fine Fowers of Pozzolan Chemical Adixtures)

  • 김도수;노재성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.25-29
    • /
    • 1995
  • To perform high-strength of concrete, fine powers of pozzolan such as fly ash, silica fume mixed with cement. But mobility of cement and concrete decreased due to using of these powers. To control decrease of this mobility, it is required that mobility is improved by using of chemical admixture such as superplasticizer. We used admixtures -NSF, NM-2, NT-2 etc- in order to improve mobility of cement paste being substituted by 10, 20% of pozzolans respectively. It proved that optimum dosage of NSF, NT-2 was 2.0% for being substituted 10%, 3.0% for 20% so as to increase mobility of cement paste mixed paste mixed with fine powers of pozzolan at W/C=0.40.

  • PDF

열적성질을 고려한 콘크리트의 수화발열특성에 관한 연구 (The Effect of Thermal Properties on Temperature Development of Concrete)

  • 손명수;박연동;김훈;김호영;이양수;강석화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.97-102
    • /
    • 1997
  • In this study, a predictive method which was modified from KIshi's model for the temperature development of concrete was developed by using mineral compounds of clinker and pozzolans. Temperature dependent heat generation of reaction was also considered. Specific heat considering the effect of mix proportion and temperature was calculated with experimental data in the literatures. Thermal conductivity considering the effect of mix proportion and temperature was experimentally investigated. Through this research it was found that the developed method considering thermal properties accurately predicted adiabatic temperature rise of concrete without the experiment. It was also found that the thermal conductivity of concrete could be predicted by the volume ratio of each component of mix proportion and was independent of temperature within the normal climatic range.

  • PDF

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

Pozzolanicity identification in mortars by computational analysis of micrographs

  • Filho, Rafael G.D. Molin;Rosso, Jaciele M.;Volnistem, Eduardo A.;Vanderlei, Romel D.;Longhi, Daniel A.;de Souza, Rodrigo C.T.;Paraiso, Paulo R.;Jorge, Luiz M. de M.
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.175-184
    • /
    • 2021
  • The incorporation of pozzolans to Portland cement pastes adds value in the development of new materials for the construction industry. This study presents a new computational method, complementary to the pozzolanic identification by compressive strength at 28 days method, for supporting the validation of pozzolanic mortars for non-structural purposes. An algorithm capable of classifying the pixels of micrographs of specimens fragments was developed. Therefore, comparative analyses were generated from fractional Gaussian representations in four intervals of the same amplitude that indicated the predispositions to form larger void indices (intervals 1 and 2). The results showed that the computational method indicators are in accordance with the physical and chemical indicators.

Chloride penetration resistance of concrete containing ground fly ash, bottom ash and rice husk ash

  • Inthata, Somchai;Cheerarot, Raungrut
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.17-30
    • /
    • 2014
  • This research presents the effect of various ground pozzolanic materials in blended cement concrete on the strength and chloride penetration resistance. An experimental investigation dealing with concrete incorporating ground fly ash (GFA), ground bottom ash (GBA) and ground rice husk ash (GRHA). The concretes were mixed by replacing each pozzolan to Ordinary Portland cement at levels of 0%, 10%, 20% and 40% by weight of binder. Three different water to cement ratios (0.35, 0.48 and 0.62) were used and type F superplasticizer was added to keep the required slump. Compressive strength and chloride permeability were determined at the ages of 28, 60, and 90 days. Furthermore, using this experimental database, linear and nonlinear multiple regression techniques were developed to construct a mathematical model of chloride permeability in concretes. Experimental results indicated that the incorporation of GFA, GBA and GRHA as a partial cement replacement significantly improved compressive strength and chloride penetration resistance. The chloride penetration of blended concrete continuously decreases with an increase in pozzolan content up to 40% of cement replacement and yields the highest reduction in the chloride permeability. Compressive strength of concretes incorporating with these pozzolans was obviously higher than those of the control concretes at all ages. In addition, the nonlinear technique gives a higher degree of accuracy than the linear regression based on statistical parameters and provides fairly reasonable absolute fraction of variance ($R^2$) of 0.974 and 0.960 for the charge passed and chloride penetration depth, respectively.

Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite

  • Yilmaz, Fatih;Fidan, Duygu
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.301-306
    • /
    • 2018
  • Stabilization of clayey soil has been studied from past to present by mixing different additives to the soil to increase its strength and durability. In recent years, there has been an increasing interest in stabilization of soils with natural pozzolans. Despite this, very few studies have investigated the impact of pozzolanic additives under freeze-thaw cycling. This paper presents the results of an experimental research study on the durability behavior of clayey soils treated with lime and perlite. For this purpose, soil was stabilized with 6% lime content by weight of dry soil (optimum lime ratio of the the soil), perlite was mixed with it in 0%, 5%, 10%, 20%, 25% and 30% proportions. Test specimens were compacted in the laboratory and cured for 7, 28 and 84 days, after which they were tested for unconfined compression tests. In addition to this, they were subjected to 12 closed system freeze-thaw cycles after curing for 28 days. The results show that the addition of perlite as a pozzolanic additive to lime stabilized soil improves the strength and durability. Unconfined compressive strength increases with increased perlite content. The findings indicate that using natural pozzolan which is cheaper than lime, has positive effect in strength and durability of soils and can result cost reduction of stabilization.