• Title/Summary/Keyword: power-law fluid

Search Result 119, Processing Time 0.022 seconds

Rheological Properties of Dandelion Root Concentrates by Extraction Solvents

  • Lee, Ok-Hwan;Kang, Suk-Nam;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • This study was performed to provide basic rheological data of dandelion root concentrates in order to predict their processing aptitude and usefulness as functional foods material. The hot water and 70% ethanol extracts of dandelion root were concentrated at 5, 20, and 50 Brix, and their static viscosity, dynamic viscosity, and Arrhenius plots were investigated. Almost all hot water concentrates showed the typical flow properties of a pseudoplastic fluid, but evaluation using the power law model indicated that the 70% ethanol concentrates showed a flow behavior close to a Newtonian fluid. The apparent viscosity of hot water and 70% ethanol concentrates decreased with increasing temperature. Yield stresses of hot water and 70% ethanol concentrates by Herschel-Bulkley model application were in the range of 0.026 - 1.368 Pa and 0.022 - 0.238 Pa, respectively. The effect of temperature and concentration on the apparent viscosity was examined by Arrhenius equation. The activation energies of hot water and 70% ethanol concentrates were in the range of $8.762-23.778{\times}10^3\;J/mol{\cdot}kg$ and $3.217-20.384{\times}10^3\;J/mol{\cdot}kg$ with increasing concentration, respectively. Storage (G') and loss (G") moduli were generally increased with increasing frequency. For the 70% ethanol concentrates, G" predominated over G' at all applied frequencies and so they showed the typical flow behavior of a low molecular solution. However, for the hot water concentrates, G' predominated over G" at more than 1.9 rad/sec (cross-over point) and so they showed the typical flow behavior of a macromolecular solution.

Insertion loss by bubble layer surrounding a spherical elastic shell submerged in water (수중의 구형 탄성 몰수체를 둘러싼 기포층에 의한 삽입손실)

  • Lee, Keunhwa;Lee, Cheolwon;Park, Cheolsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • Acoustic radiation from a submerged elastic shell with an internal fluid surrounded by the bubble layer is studied with the modal theory. An omni-directional point source located on the center of the internal fluid is used as acoustic noise source. The unknown coefficients of modal solutions are solved using the interface conditions between media. To preserve the stability of the modal solution over wide frequency ranges, the scaled technique of modal solution is used. The bubble layer is modeled with four kinds of bubble distribution; uni-modal distribution, uniform distribution, normal distribution, and power-law distribution, based on the effective medium theory of Commander and Prosperetti. For each bubble distribution, the insertion losses are mainly calculated for the frequency. In addition, the numerical simulations are performed depending in the bubble void fraction, the material property of elastic shell, and the gap between the bubble layer and the elastic shell.

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

FALKNER-SKAN EQUATION FOR FLOW PAST A MOVING WEDGE WITH SUCTION OR INJECTION

  • Ishak, Anuar;Nazar, Roslinda;Pop, Ioan
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.67-83
    • /
    • 2007
  • The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter ($f_0$) and the ratio of free stream velocity to boundary velocity parameter (${\lambda}$) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values of $f_0$, m and ${\lambda}$ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.

Numerical Study of Internal Flow in Twin Screw Extruder and Its Mixing Performance Analysis (이축 스크루 압출기내 유동의 수치 해석과 혼합 성능 분석)

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.32-41
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder.

Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction (저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석)

  • Jung, Young-Jin;Cho, Ho-Sang;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF

Performance of Evaporation Heat Transfer Enhancement and Pressure Drop for Liquid Nitrogen (액체질소에 대한 증발 열전달 촉진 및 압력강하 성능)

  • Nam, Sang-Chul;Lee, Sang-Chun;Park, Byung-Duck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.363-372
    • /
    • 2000
  • An experiment was carried out to evaluate the heat transfer enhancement and the pressure drop characteristics for liquid nitrogen using wire-coil-insert technique under horizontal two-phase conditions. The tube inner diameters were 8 mm and 15 mm, respectively and the tube length was 4.7 m. The helix angle of the wire coil insert was $50^{\circ}$ and its length was 4.7 m. Heat transfer coefficients for both the plain and the enhanced test tubes were calculated from the measurements of temperatures, flow rates and pressure drops. A correlation in a power-law relationship of the Nusselt number, Reynolds number and Prandtl number for the heat transfer was proposed which can be available for design of cryogenic heat exchangers. The correlation showed that heat transfer coefficients for the wire-coil inserts were much higher than those for plain tubes, increased by more than $1.8{\sim}2.0$ times depending upon the range of the equivalent Reynolds number. The correlation was compared with other various correlations in the turbulent flow conditions.

Rheological Properties of Concentrated Dandelion Leaf Extracts by Hot Water or Ethanol

  • Lee, Ok-Hwan;Ko, Sung-Kwon;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.264-269
    • /
    • 2006
  • Basic rheological data of dandelion leaf concentrates were determined to predict processing aptitude and usefulness of dandelion leaf concentrates as functional food materials. Hot water and 70% ethanol extracts of dandelion leaves were concentrated at 5, 20, and 50 Brix, and their static and dynamic viscosities, and Arrhenius plots were investigated. Most concentrated dandelion leaves extracted with hot water and 70% ethanol showed flow behaviors close to Newtonian fluid based on power law model evaluation. Apparent viscosity of concentrated dandelion leaves extracted with hot water and 70% ethanol decreased with increasing temperature. Yield stresses of concentrated dandelion leaves extracted with hot water and 70% ethanol by Herschel-Bulkley model application were 0.020-0.641 and 0.017-0.079 Pa, respectively. Activation energies of concentrated dandelion leaves extracted with hot water and 70% ethanol were $2.102-32.669{\times}10^3$ and $1.657-5.382{\times}10^3\;J/mol{\cdot}kg$ with increasing concentration, respectively. Loss modulus (G") predominated over storage modulus (G') at all applied frequencies, showing typical flow behavior of low molecular solution. G' and G" of concentrated dandelion leaves extracted with hot water slowly increased with increasing frequency compared to those of concentrated dandelion leaves extracted with 70% ethanol.

Rheological Properties of Exopolysaccharide Produced by Xanthomonas sp. EPS-1 (Xanthomonas sp. EPS-1이 생산하는 다당류의 리올로지 특성)

  • Son, Bong-Soo;Park, Seok-Kyu;Kang, Shin-Kwon;Lee, Sang-Won;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.269-274
    • /
    • 1995
  • For the screening of a new functional exopolysaccharide, sugar composition and rheological properties of exopolysaccharide produced from Xanthomonas sp. EPS-1 were investigated. The average molecular weight of exopolysaccharide was determined to be approximately 2.l $\times$ 10$^{6}$ dalton. The new exopolysaccharide EPS-1 was composed of mannose, glucose, galactose and gluco- samine. IR analysis showed that the exopolysaccharide EPS-1 was assumed to be polymer with carbohydrates. NMR analysis showed that exopolysaccharide EPS-1 was presumed to be 4 units of sugar and trace of CH$_{3}$ group. Exopolysaccharide EPS-1 solution showed a characteristic of non-Newtonian fluid properties. At the concentration of 1.0%, the consistency index and the flow behavior index were shown at 10.8352 poise-sec and 0.4419, respectively. All dispersions were pseudoplastic fluids described accurately by Power-law model. Exopolysaccharide EPS-1 was highly viscous at low concentration, with good stability over a wide range of pH 5 to 13. The excellent compatibility of exopolysaccharide EPS-1 was represented with salts such as sodium chloride.

  • PDF

Uncertainty Evaluation of Velocity Integration Method for 5-Chord Ultrasonic Flow Meter Using Weighting Factor Method (가중계수법을 이용한 5회선 초음파 유량계의 유속적분방법의 불확도 평가)

  • Lee, Ho-June;Lee, Kwon-Hee;Noh, Seok-Hong;Hwang, Sang-Yoon;Noh, Young-Ah
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.287-294
    • /
    • 2005
  • Flow rate measurement uncertainties of the ultrasonic flow meter are generally influenced by many different factors, such as Reynolds number, flow distortion, turbulence intensity, wall surface roughness, velocity integration method along the acoustic paths, and transducer installation method, etc. Of these influencing factors, one of the most important uncertainties comes from the velocity integration method. In the present study, a optimization weighting factor method for 5-chord, which is given by a function of the chord locations of acoustic paths, is employed to obtain the mean velocity in the flow through a pipe. The power law profile is assumed to model the axi-symmetric pipe flow and its results are compared with the present weighting factor concept. For an asymmetric pipe flow, the Salami flow model is applied to obtain the velocity profiles. These theoretical methods are also compared with the previous Gaussian, Chebyshev, and Tailor methods. The results obtained show that for the fully developed turbulent pipe flows with surface roughness effects, the present weighting factor method is much less sensitive than Chebyshev and Tailor methods, leading to a better reliability in flow rate measurement using the ultrasonic flow meters.

  • PDF