• Title/Summary/Keyword: power system restoration

Search Result 167, Processing Time 0.03 seconds

Distribution contingency analysis considering restoration capability (복구능력을 고려한 배전계통 상정사고 해석법)

  • Park, Jeong-Eun;Kim, Hyung-Seung;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.318-320
    • /
    • 2015
  • The distribution system is operated radially in which electrical grid is complex. If a fault occurs in distribution system, it can make a huge impact on power supply. Therefore, The distribution contingency analysis is proposed in this paper based on the reference [1]. Using RSI (Restoration Section Index) calculated by feeder margin and section load, the operator can grasp restoration capability quickly.

  • PDF

Development of Enhanced Real-Time Service Restoration Algorithm for Distribution Automation System (실 배전계통 자동화를 위한 개선된 고장복구 알고리즘 개발)

  • Oh, H.J.;Mun, K.J.;Kim, H.S.;Seo, J.I.;Hwang, G.H.;Park, J.H.;Lim, S.I.;Ha, B.N.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.159-161
    • /
    • 2000
  • This paper presents a GA for service restoration in electric power distribution systems. The aim of the service restoration is to restore service with maximizing the amount of total load restored while minimizing the number of required switch operation when a fault or overload occurs in distribution system. This paper develops GA for service restoration problem with constrained multi-objective optimization problem. The results show the effectiveness of the proposed method for solving the problem.

  • PDF

The development study on the power system operation and protection scheme in Myanmar (미얀마 전력계통 운영 및 보호시스템 구축 사업)

  • Kim, Jong-Hwa;Choi, Young-Sung;Han, Seong-Min;Lee, Duck-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.34-35
    • /
    • 2008
  • KEPCO conducted a third project in Myanmar regarding system operation and protection scheme. This paper deals with blackout reduction plan, reactive power compensation plan and system restoration procedures in operations parts. Moreover protection system improvement plan and standard protection schemes were suggested.

  • PDF

A Rule-based Approach for the recognition of system isolation state using information on circuit breakers (차단기 정보를 이용한 계통의 분리 상태 인식의 룰-베이스적 접근)

  • Park, Y.M.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.841-842
    • /
    • 1988
  • For determination of black-out area and restoration area by an expert system for fault section estimation and power system restoration using information from circuit breakers, it is necessary that the recognition of system isolation state and a method of finding the change of system isolation state by the state transition of breakers in isolated system. This paper presents a method of resolving the above problem by rule-based approach.

  • PDF

A Study on Power Outage Cost Analysis according to Distribution System Resilience and Restoration Strategies (배전계통 복원력 확보 및 복원 전략에 따른 정전비용분석에 관한 연구)

  • Sehun Seo;Hyeongon Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.18-24
    • /
    • 2023
  • Severe natural disasters and man-made attacks such as terrorism are causing unprecedented disruptions in power systems. Due to rapid climate change and the aging of energy infrastructure, both the frequency of failure and the level of damage are expected to increase. Resilience is a concept proposed to respond to extreme disaster events that have a low probability of occurrence but cause enormous damage and is defined as the ability of a system to recover to its original function after a disaster. Resilience is a comprehensive indicator that can include system performance before and after a disaster and focuses on preparing for all possible disaster scenarios and having quick and efficient recovery actions after an incident. Various studies have been conducted to evaluate resilience, but studies on economic damage considering the duration of a power outage are scarce. In this study, we propose an optimal algorithm that can identify failures after an extreme disaster and restore the load on the distribution system through emergency distributed power generation input and system reconfiguration. After that, the cost of power outage damage is analyzed by applying VoLL and CDF according to each restoration strategy.

A Novel Algorithm for Reducing Restoration Time in Smart Distribution Systems Utilizing Reclosing Dead Time

  • Hussain, Akhtar;Choi, Myeon-Song;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1805-1811
    • /
    • 2014
  • After an occurrence of a fault in any distribution system, it is desired to limit the effects of the fault to smallest possible area and restore the un-faulty areas as soon as possible. Due the advancements in communication technologies, this task can be achieved in multiple efficient ways. In order to decrease the restoration time in the Smart Grid Distribution Management System (SDMS) a communication based algorithm is proposed in this paper, in which the restoration can be done during reclosing. This paper also analyzes various communication failures with power failures cases including the entire network of communication failures. Results of all these cases have been verified by doing simulations.

An Application of advanced Dijkstra algorithm and Fuzzy rule to search a restoration topology in Distribution Systems (배전계통 사고복구 구성탐색을 위한 개선된 다익스트라 알고리즘과 퍼지규칙의 적용)

  • Kim, Hoon;Jeon, Young-Jae;Kim, Jae-Chul;Choi, Do-Hyuk;Chung, Yong-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.537-540
    • /
    • 2000
  • The Distribution System consist of many tie-line switches and sectionalizing switches, operated a radial type. When an outage occurs in Distribution System, outage areas are isolated by system switches, has to restored as soon as possible. At this time, system operator have to get a information about network topology for service restoration of outage areas. Therefore, the searching result of restorative topology has to fast computation time and reliable result topology for to restore a electric service to outage areas, equal to optimal switching operation problem. So, the problem can be defined as combinatorial optimization problem. The service restoration problem is so important problem which have outage area minimization, outage loss minimization. Many researcher is applying to the service restoration problem with various techniques. In this paper, advanced Dijkstra algorithm is applied to searching a restoration topology, is so efficient to searching a shortest path in graph type network. Additionally, fuzzy rules and operator are applied to overcome a fuzziness of correlation with input data. The present technique has superior results which are fast computation time and searching results than previous researches, demonstrated by example distribution model system which has 3 feeders, 26 buses. For a application capability to real distribution system, additionally demonstrated by real distribution system of KEPCO(Korea Electric Power Corporation) which has 8 feeders and 140 buses.

  • PDF

Analysis of the Overvoltages during Energizing Transmission Lines using EMTP (EMTP를 이용한 시송전 계통의 송전선로 초기 가압시 과전압 분석에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Young-Sik;Joo, Haeng-Ro;Cho, Burm-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.873-878
    • /
    • 2009
  • When the transmission lines are initially energized for power system restoration, the power system suffers the various overvoltages that can be classified as steady-state, transient, and dynamic overvoltages. For the accurate analyses of these overvoltages, many researchers utilize different simulation tools such as Power System Simulator for Engineering(PSS/E). Although PSS/E provides good solutions in steady-state and dynamic overvoltages, it is not suitable for transient overvoltages. Therefore, transient overvoltages are simulated by using Electro-Magnetic Transients Program(EMTP) developed for the analysis of transients in the power system. Recently, EMTP can be also used to simulate dynamic behavior of the system. In order to analyze the transient overvoltages with steady-state and dynamic overvoltages, the authors adopt EMTP as the simulation tool for the analysis of overvoltages. This paper presents the simulation results for the analyses of various overvoltages, and the possibility of EMTP to be used for these types of analyses.

Development of Automatic Power Restoration System And Operation in KEPCO Real Power System (정전자동복구시스템의 개발 및 한전 실계통 적용)

  • Hong, Soon-Chun;Choo, Jin-Boo;Lee, Nam-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.49-51
    • /
    • 2001
  • Recently, according to a rapid increase of the power demand, the KEPCO's 154kV lines are continuously expanded and become to the more complex loop system. As a result of increase of the fault capacity and the unbalance of power load flow, the circuit breaker have been exceeding the capacity limit of those in the loop power system. To solve this problem, APRS application will be necessary more and more.

  • PDF

Continuation-Based Quasi-Steady-State Analysis Incorporating Multiplicative Load Restoration Model (증배형 부하회복 모델을 포함하는 연속법 기반 준정적 해석)

  • Song, Hwa-Chang;Ajjarapu, Venkatanamana
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • This paper presents a new continuation-based quasi-steady-state(CQSS) time-domain simulation algorithm incorporating a multiplicative aggregated load model for power systems. The authors' previous paper introduced a CQSS algorithm, which has the robust convergent characteristic near the singularity point due to the application of a continuation method. The previous CQSS algorithm implemented the load restoration in power systems using the exponent-based load recovery model that is derived from the additive dynamic load model. However, the reformulated exponent-based model causes the inappropriate variation of short-term load characteristics when switching actions occur, during time-domain simulation. This paper depicts how to incorporate a multiplicative load restoration model, which does not have the problem of deforming short-term load characteristics, into the time simulation algorithm, and shows an illustrative example with a 39-bus test system.